kvm/internal/audio/monitor_process.go
Alex P 1d1658db15 refactor(audio): replace GetConfig() calls with direct Config access
This change replaces all instances of GetConfig() function calls with direct access to the Config variable throughout the audio package. The modification improves performance by eliminating function call overhead and simplifies the codebase by removing unnecessary indirection.

The commit also includes minor optimizations in validation logic and connection handling, while maintaining all existing functionality. Error handling remains robust with appropriate fallbacks when config values are not available.

Additional improvements include:
- Enhanced connection health monitoring in UnifiedAudioClient
- Optimized validation functions using cached config values
- Reduced memory allocations in hot paths
- Improved error recovery during quality changes
2025-09-08 17:30:49 +00:00

407 lines
11 KiB
Go

package audio
import (
"bufio"
"fmt"
"os"
"strconv"
"strings"
"sync"
"time"
"github.com/jetkvm/kvm/internal/logging"
"github.com/rs/zerolog"
)
// Variables for process monitoring (using configuration)
var (
// System constants
maxCPUPercent = Config.MaxCPUPercent
minCPUPercent = Config.MinCPUPercent
defaultClockTicks = Config.DefaultClockTicks
defaultMemoryGB = Config.DefaultMemoryGB
// Monitoring thresholds
maxWarmupSamples = Config.MaxWarmupSamples
warmupCPUSamples = Config.WarmupCPUSamples
// Channel buffer size
metricsChannelBuffer = Config.MetricsChannelBuffer
// Clock tick detection ranges
minValidClockTicks = float64(Config.MinValidClockTicks)
maxValidClockTicks = float64(Config.MaxValidClockTicks)
)
// Variables for process monitoring
var (
pageSize = Config.PageSize
)
// ProcessMetrics represents CPU and memory usage metrics for a process
type ProcessMetrics struct {
PID int `json:"pid"`
CPUPercent float64 `json:"cpu_percent"`
MemoryRSS int64 `json:"memory_rss_bytes"`
MemoryVMS int64 `json:"memory_vms_bytes"`
MemoryPercent float64 `json:"memory_percent"`
Timestamp time.Time `json:"timestamp"`
ProcessName string `json:"process_name"`
}
type ProcessMonitor struct {
logger zerolog.Logger
mutex sync.RWMutex
monitoredPIDs map[int]*processState
running bool
stopChan chan struct{}
metricsChan chan ProcessMetrics
updateInterval time.Duration
totalMemory int64
memoryOnce sync.Once
clockTicks float64
clockTicksOnce sync.Once
}
// processState tracks the state needed for CPU calculation
type processState struct {
name string
lastCPUTime int64
lastSysTime int64
lastUserTime int64
lastSample time.Time
warmupSamples int
}
// NewProcessMonitor creates a new process monitor
func NewProcessMonitor() *ProcessMonitor {
return &ProcessMonitor{
logger: logging.GetDefaultLogger().With().Str("component", "process-monitor").Logger(),
monitoredPIDs: make(map[int]*processState),
stopChan: make(chan struct{}),
metricsChan: make(chan ProcessMetrics, metricsChannelBuffer),
updateInterval: GetMetricsUpdateInterval(),
}
}
// Start begins monitoring processes
func (pm *ProcessMonitor) Start() {
pm.mutex.Lock()
defer pm.mutex.Unlock()
if pm.running {
return
}
pm.running = true
go pm.monitorLoop()
pm.logger.Debug().Msg("process monitor started")
}
// Stop stops monitoring processes
func (pm *ProcessMonitor) Stop() {
pm.mutex.Lock()
defer pm.mutex.Unlock()
if !pm.running {
return
}
pm.running = false
close(pm.stopChan)
pm.logger.Debug().Msg("process monitor stopped")
}
// AddProcess adds a process to monitor
func (pm *ProcessMonitor) AddProcess(pid int, name string) {
pm.mutex.Lock()
defer pm.mutex.Unlock()
pm.monitoredPIDs[pid] = &processState{
name: name,
lastSample: time.Now(),
}
pm.logger.Info().Int("pid", pid).Str("name", name).Msg("Added process to monitor")
}
// RemoveProcess removes a process from monitoring
func (pm *ProcessMonitor) RemoveProcess(pid int) {
pm.mutex.Lock()
defer pm.mutex.Unlock()
delete(pm.monitoredPIDs, pid)
pm.logger.Info().Int("pid", pid).Msg("Removed process from monitor")
}
// GetMetricsChan returns the channel for receiving metrics
func (pm *ProcessMonitor) GetMetricsChan() <-chan ProcessMetrics {
return pm.metricsChan
}
// GetCurrentMetrics returns current metrics for all monitored processes
func (pm *ProcessMonitor) GetCurrentMetrics() []ProcessMetrics {
pm.mutex.RLock()
defer pm.mutex.RUnlock()
var metrics []ProcessMetrics
for pid, state := range pm.monitoredPIDs {
if metric, err := pm.collectMetrics(pid, state); err == nil {
metrics = append(metrics, metric)
}
}
return metrics
}
// monitorLoop is the main monitoring loop
func (pm *ProcessMonitor) monitorLoop() {
ticker := time.NewTicker(pm.updateInterval)
defer ticker.Stop()
for {
select {
case <-pm.stopChan:
return
case <-ticker.C:
pm.collectAllMetrics()
}
}
}
func (pm *ProcessMonitor) collectAllMetrics() {
pm.mutex.RLock()
pidsToCheck := make([]int, 0, len(pm.monitoredPIDs))
states := make([]*processState, 0, len(pm.monitoredPIDs))
for pid, state := range pm.monitoredPIDs {
pidsToCheck = append(pidsToCheck, pid)
states = append(states, state)
}
pm.mutex.RUnlock()
deadPIDs := make([]int, 0)
for i, pid := range pidsToCheck {
if metric, err := pm.collectMetrics(pid, states[i]); err == nil {
select {
case pm.metricsChan <- metric:
default:
}
} else {
deadPIDs = append(deadPIDs, pid)
}
}
for _, pid := range deadPIDs {
pm.RemoveProcess(pid)
}
}
func (pm *ProcessMonitor) collectMetrics(pid int, state *processState) (ProcessMetrics, error) {
now := time.Now()
metric := ProcessMetrics{
PID: pid,
Timestamp: now,
ProcessName: state.name,
}
statPath := fmt.Sprintf("/proc/%d/stat", pid)
statData, err := os.ReadFile(statPath)
if err != nil {
return metric, fmt.Errorf("failed to read process statistics from /proc/%d/stat: %w", pid, err)
}
fields := strings.Fields(string(statData))
if len(fields) < 24 {
return metric, fmt.Errorf("invalid process stat format: expected at least 24 fields, got %d from /proc/%d/stat", len(fields), pid)
}
utime, _ := strconv.ParseInt(fields[13], 10, 64)
stime, _ := strconv.ParseInt(fields[14], 10, 64)
totalCPUTime := utime + stime
vsize, _ := strconv.ParseInt(fields[22], 10, 64)
rss, _ := strconv.ParseInt(fields[23], 10, 64)
metric.MemoryRSS = rss * int64(pageSize)
metric.MemoryVMS = vsize
// Calculate CPU percentage
metric.CPUPercent = pm.calculateCPUPercent(totalCPUTime, state, now)
// Increment warmup counter
if state.warmupSamples < maxWarmupSamples {
state.warmupSamples++
}
// Calculate memory percentage (RSS / total system memory)
if totalMem := pm.getTotalMemory(); totalMem > 0 {
metric.MemoryPercent = float64(metric.MemoryRSS) / float64(totalMem) * Config.PercentageMultiplier
}
// Update state for next calculation
state.lastCPUTime = totalCPUTime
state.lastUserTime = utime
state.lastSysTime = stime
state.lastSample = now
return metric, nil
}
// calculateCPUPercent calculates CPU percentage for a process with validation and bounds checking.
//
// Validation Rules:
// - Returns 0.0 for first sample (no baseline for comparison)
// - Requires positive time delta between samples
// - Applies CPU percentage bounds: [MinCPUPercent, MaxCPUPercent]
// - Uses system clock ticks for accurate CPU time conversion
// - Validates clock ticks within range [MinValidClockTicks, MaxValidClockTicks]
//
// Bounds Applied:
// - CPU percentage clamped to [0.01%, 100.0%] (default values)
// - Clock ticks validated within [50, 1000] range (default values)
// - Time delta must be > 0 to prevent division by zero
//
// Warmup Behavior:
// - During warmup period (< WarmupCPUSamples), returns MinCPUPercent for idle processes
// - This indicates process is alive but not consuming significant CPU
//
// The function ensures accurate CPU percentage calculation while preventing
// invalid measurements that could affect system monitoring and adaptive algorithms.
func (pm *ProcessMonitor) calculateCPUPercent(totalCPUTime int64, state *processState, now time.Time) float64 {
if state.lastSample.IsZero() {
// First sample - initialize baseline
state.warmupSamples = 0
return 0.0
}
timeDelta := now.Sub(state.lastSample).Seconds()
cpuDelta := float64(totalCPUTime - state.lastCPUTime)
if timeDelta <= 0 {
return 0.0
}
if cpuDelta > 0 {
// Convert from clock ticks to seconds using actual system clock ticks
clockTicks := pm.getClockTicks()
cpuSeconds := cpuDelta / clockTicks
cpuPercent := (cpuSeconds / timeDelta) * Config.PercentageMultiplier
// Apply bounds
if cpuPercent > maxCPUPercent {
cpuPercent = maxCPUPercent
}
if cpuPercent < minCPUPercent {
cpuPercent = minCPUPercent
}
return cpuPercent
}
// No CPU delta - process was idle
if state.warmupSamples < warmupCPUSamples {
// During warmup, provide a small non-zero value to indicate process is alive
return minCPUPercent
}
return 0.0
}
func (pm *ProcessMonitor) getClockTicks() float64 {
pm.clockTicksOnce.Do(func() {
// Try to detect actual clock ticks from kernel boot parameters or /proc/stat
if data, err := os.ReadFile("/proc/cmdline"); err == nil {
// Look for HZ parameter in kernel command line
cmdline := string(data)
if strings.Contains(cmdline, "HZ=") {
fields := strings.Fields(cmdline)
for _, field := range fields {
if strings.HasPrefix(field, "HZ=") {
if hz, err := strconv.ParseFloat(field[3:], 64); err == nil && hz > 0 {
pm.clockTicks = hz
return
}
}
}
}
}
// Try reading from /proc/timer_list for more accurate detection
if data, err := os.ReadFile("/proc/timer_list"); err == nil {
timer := string(data)
// Look for tick device frequency
lines := strings.Split(timer, "\n")
for _, line := range lines {
if strings.Contains(line, "tick_period:") {
fields := strings.Fields(line)
if len(fields) >= 2 {
if period, err := strconv.ParseInt(fields[1], 10, 64); err == nil && period > 0 {
// Convert nanoseconds to Hz
hz := Config.CGONanosecondsPerSecond / float64(period)
if hz >= minValidClockTicks && hz <= maxValidClockTicks {
pm.clockTicks = hz
return
}
}
}
}
}
}
// Fallback: Most embedded ARM systems (like jetKVM) use 250 Hz or 1000 Hz
// rather than the traditional 100 Hz
pm.clockTicks = defaultClockTicks
pm.logger.Warn().Float64("clock_ticks", pm.clockTicks).Msg("Using fallback clock ticks value")
// Log successful detection for non-fallback values
if pm.clockTicks != defaultClockTicks {
pm.logger.Info().Float64("clock_ticks", pm.clockTicks).Msg("Detected system clock ticks")
}
})
return pm.clockTicks
}
func (pm *ProcessMonitor) getTotalMemory() int64 {
pm.memoryOnce.Do(func() {
file, err := os.Open("/proc/meminfo")
if err != nil {
pm.totalMemory = int64(defaultMemoryGB) * int64(Config.ProcessMonitorKBToBytes) * int64(Config.ProcessMonitorKBToBytes) * int64(Config.ProcessMonitorKBToBytes)
return
}
defer file.Close()
scanner := bufio.NewScanner(file)
for scanner.Scan() {
line := scanner.Text()
if strings.HasPrefix(line, "MemTotal:") {
fields := strings.Fields(line)
if len(fields) >= 2 {
if kb, err := strconv.ParseInt(fields[1], 10, 64); err == nil {
pm.totalMemory = kb * int64(Config.ProcessMonitorKBToBytes)
return
}
}
break
}
}
pm.totalMemory = int64(defaultMemoryGB) * int64(Config.ProcessMonitorKBToBytes) * int64(Config.ProcessMonitorKBToBytes) * int64(Config.ProcessMonitorKBToBytes) // Fallback
})
return pm.totalMemory
}
// GetTotalMemory returns total system memory in bytes (public method)
func (pm *ProcessMonitor) GetTotalMemory() int64 {
return pm.getTotalMemory()
}
// Global process monitor instance
var globalProcessMonitor *ProcessMonitor
var processMonitorOnce sync.Once
// GetProcessMonitor returns the global process monitor instance
func GetProcessMonitor() *ProcessMonitor {
processMonitorOnce.Do(func() {
globalProcessMonitor = NewProcessMonitor()
globalProcessMonitor.Start()
})
return globalProcessMonitor
}