kvm/internal/audio/ipc.go
Alex P 44a35aa5c2 feat(audio): add socket buffer configuration and monitoring
Add socket buffer configuration support with metrics collection for audio IPC connections. This improves performance monitoring and allows tuning socket buffers for optimal audio streaming performance.

- Introduce SocketBufferConfig struct with default and high-load presets
- Add socket buffer configuration to AudioServer and AudioInputServer
- Implement socket buffer metrics collection (size, utilization, overflow)
- Add new Prometheus metrics for socket buffer monitoring
2025-08-24 23:56:58 +00:00

526 lines
13 KiB
Go

package audio
import (
"context"
"encoding/binary"
"fmt"
"io"
"net"
"os"
"path/filepath"
"sync"
"sync/atomic"
"time"
"github.com/jetkvm/kvm/internal/logging"
"github.com/rs/zerolog"
)
const (
outputMagicNumber uint32 = 0x4A4B4F55 // "JKOU" (JetKVM Output)
outputSocketName = "audio_output.sock"
outputMaxFrameSize = 4096 // Maximum Opus frame size
outputWriteTimeout = 10 * time.Millisecond // Non-blocking write timeout (increased for high load)
outputMaxDroppedFrames = 50 // Maximum consecutive dropped frames
outputHeaderSize = 17 // Fixed header size: 4+1+4+8 bytes
outputMessagePoolSize = 128 // Pre-allocated message pool size
)
// OutputMessageType represents the type of IPC message
type OutputMessageType uint8
const (
OutputMessageTypeOpusFrame OutputMessageType = iota
OutputMessageTypeConfig
OutputMessageTypeStop
OutputMessageTypeHeartbeat
OutputMessageTypeAck
)
// OutputIPCMessage represents an IPC message for audio output
type OutputIPCMessage struct {
Magic uint32
Type OutputMessageType
Length uint32
Timestamp int64
Data []byte
}
// OutputOptimizedMessage represents a pre-allocated message for zero-allocation operations
type OutputOptimizedMessage struct {
header [outputHeaderSize]byte // Pre-allocated header buffer
data []byte // Reusable data buffer
}
// OutputMessagePool manages pre-allocated messages for zero-allocation IPC
type OutputMessagePool struct {
pool chan *OutputOptimizedMessage
}
// NewOutputMessagePool creates a new message pool
func NewOutputMessagePool(size int) *OutputMessagePool {
pool := &OutputMessagePool{
pool: make(chan *OutputOptimizedMessage, size),
}
// Pre-allocate messages
for i := 0; i < size; i++ {
msg := &OutputOptimizedMessage{
data: make([]byte, outputMaxFrameSize),
}
pool.pool <- msg
}
return pool
}
// Get retrieves a message from the pool
func (p *OutputMessagePool) Get() *OutputOptimizedMessage {
select {
case msg := <-p.pool:
return msg
default:
// Pool exhausted, create new message
return &OutputOptimizedMessage{
data: make([]byte, outputMaxFrameSize),
}
}
}
// Put returns a message to the pool
func (p *OutputMessagePool) Put(msg *OutputOptimizedMessage) {
select {
case p.pool <- msg:
// Successfully returned to pool
default:
// Pool full, let GC handle it
}
}
// Global message pool for output IPC
var globalOutputMessagePool = NewOutputMessagePool(outputMessagePoolSize)
type AudioServer struct {
// Atomic fields must be first for proper alignment on ARM
bufferSize int64 // Current buffer size (atomic)
droppedFrames int64 // Dropped frames counter (atomic)
totalFrames int64 // Total frames counter (atomic)
listener net.Listener
conn net.Conn
mtx sync.Mutex
running bool
// Advanced message handling
messageChan chan *OutputIPCMessage // Buffered channel for incoming messages
stopChan chan struct{} // Stop signal
wg sync.WaitGroup // Wait group for goroutine coordination
// Latency monitoring
latencyMonitor *LatencyMonitor
adaptiveOptimizer *AdaptiveOptimizer
// Socket buffer configuration
socketBufferConfig SocketBufferConfig
}
func NewAudioServer() (*AudioServer, error) {
socketPath := getOutputSocketPath()
// Remove existing socket if any
os.Remove(socketPath)
listener, err := net.Listen("unix", socketPath)
if err != nil {
return nil, fmt.Errorf("failed to create unix socket: %w", err)
}
// Initialize with adaptive buffer size (start with 500 frames)
initialBufferSize := int64(500)
// Initialize latency monitoring
latencyConfig := DefaultLatencyConfig()
logger := zerolog.New(os.Stderr).With().Timestamp().Str("component", "audio-server").Logger()
latencyMonitor := NewLatencyMonitor(latencyConfig, logger)
// Initialize adaptive buffer manager with default config
bufferConfig := DefaultAdaptiveBufferConfig()
bufferManager := NewAdaptiveBufferManager(bufferConfig)
// Initialize adaptive optimizer
optimizerConfig := DefaultOptimizerConfig()
adaptiveOptimizer := NewAdaptiveOptimizer(latencyMonitor, bufferManager, optimizerConfig, logger)
// Initialize socket buffer configuration
socketBufferConfig := DefaultSocketBufferConfig()
return &AudioServer{
listener: listener,
messageChan: make(chan *OutputIPCMessage, initialBufferSize),
stopChan: make(chan struct{}),
bufferSize: initialBufferSize,
latencyMonitor: latencyMonitor,
adaptiveOptimizer: adaptiveOptimizer,
socketBufferConfig: socketBufferConfig,
}, nil
}
func (s *AudioServer) Start() error {
s.mtx.Lock()
defer s.mtx.Unlock()
if s.running {
return fmt.Errorf("server already running")
}
s.running = true
// Start latency monitoring and adaptive optimization
if s.latencyMonitor != nil {
s.latencyMonitor.Start()
}
if s.adaptiveOptimizer != nil {
s.adaptiveOptimizer.Start()
}
// Start message processor goroutine
s.startProcessorGoroutine()
// Accept connections in a goroutine
go s.acceptConnections()
return nil
}
// acceptConnections accepts incoming connections
func (s *AudioServer) acceptConnections() {
for s.running {
conn, err := s.listener.Accept()
if err != nil {
if s.running {
// Only log error if we're still supposed to be running
continue
}
return
}
// Configure socket buffers for optimal performance
if err := ConfigureSocketBuffers(conn, s.socketBufferConfig); err != nil {
// Log warning but don't fail - socket buffer optimization is not critical
logger := logging.GetDefaultLogger().With().Str("component", "audio-server").Logger()
logger.Warn().Err(err).Msg("Failed to configure socket buffers, continuing with defaults")
} else {
// Record socket buffer metrics for monitoring
RecordSocketBufferMetrics(conn, "audio-output")
}
s.mtx.Lock()
// Close existing connection if any
if s.conn != nil {
s.conn.Close()
}
s.conn = conn
s.mtx.Unlock()
}
}
// startProcessorGoroutine starts the message processor
func (s *AudioServer) startProcessorGoroutine() {
s.wg.Add(1)
go func() {
defer s.wg.Done()
for {
select {
case msg := <-s.messageChan:
// Process message (currently just frame sending)
if msg.Type == OutputMessageTypeOpusFrame {
if err := s.sendFrameToClient(msg.Data); err != nil {
// Log error but continue processing
atomic.AddInt64(&s.droppedFrames, 1)
}
}
case <-s.stopChan:
return
}
}
}()
}
func (s *AudioServer) Stop() {
s.mtx.Lock()
defer s.mtx.Unlock()
if !s.running {
return
}
s.running = false
// Stop latency monitoring and adaptive optimization
if s.adaptiveOptimizer != nil {
s.adaptiveOptimizer.Stop()
}
if s.latencyMonitor != nil {
s.latencyMonitor.Stop()
}
// Signal processor to stop
close(s.stopChan)
s.wg.Wait()
if s.conn != nil {
s.conn.Close()
s.conn = nil
}
}
func (s *AudioServer) Close() error {
s.Stop()
if s.listener != nil {
s.listener.Close()
}
// Remove socket file
os.Remove(getOutputSocketPath())
return nil
}
func (s *AudioServer) SendFrame(frame []byte) error {
if len(frame) > outputMaxFrameSize {
return fmt.Errorf("frame size %d exceeds maximum %d", len(frame), outputMaxFrameSize)
}
start := time.Now()
// Create IPC message
msg := &OutputIPCMessage{
Magic: outputMagicNumber,
Type: OutputMessageTypeOpusFrame,
Length: uint32(len(frame)),
Timestamp: start.UnixNano(),
Data: frame,
}
// Try to send via message channel (non-blocking)
select {
case s.messageChan <- msg:
atomic.AddInt64(&s.totalFrames, 1)
// Record latency for monitoring
if s.latencyMonitor != nil {
processingTime := time.Since(start)
s.latencyMonitor.RecordLatency(processingTime, "ipc_send")
}
return nil
default:
// Channel full, drop frame to prevent blocking
atomic.AddInt64(&s.droppedFrames, 1)
return fmt.Errorf("message channel full - frame dropped")
}
}
// sendFrameToClient sends frame data directly to the connected client
func (s *AudioServer) sendFrameToClient(frame []byte) error {
s.mtx.Lock()
defer s.mtx.Unlock()
if s.conn == nil {
return fmt.Errorf("no client connected")
}
start := time.Now()
// Get optimized message from pool
optMsg := globalOutputMessagePool.Get()
defer globalOutputMessagePool.Put(optMsg)
// Prepare header in pre-allocated buffer
binary.LittleEndian.PutUint32(optMsg.header[0:4], outputMagicNumber)
optMsg.header[4] = byte(OutputMessageTypeOpusFrame)
binary.LittleEndian.PutUint32(optMsg.header[5:9], uint32(len(frame)))
binary.LittleEndian.PutUint64(optMsg.header[9:17], uint64(start.UnixNano()))
// Use non-blocking write with timeout
ctx, cancel := context.WithTimeout(context.Background(), outputWriteTimeout)
defer cancel()
// Create a channel to signal write completion
done := make(chan error, 1)
go func() {
// Write header using pre-allocated buffer
_, err := s.conn.Write(optMsg.header[:])
if err != nil {
done <- err
return
}
// Write frame data
if len(frame) > 0 {
_, err = s.conn.Write(frame)
if err != nil {
done <- err
return
}
}
done <- nil
}()
// Wait for completion or timeout
select {
case err := <-done:
if err != nil {
atomic.AddInt64(&s.droppedFrames, 1)
return err
}
// Record latency for monitoring
if s.latencyMonitor != nil {
writeLatency := time.Since(start)
s.latencyMonitor.RecordLatency(writeLatency, "ipc_write")
}
return nil
case <-ctx.Done():
// Timeout occurred - drop frame to prevent blocking
atomic.AddInt64(&s.droppedFrames, 1)
return fmt.Errorf("write timeout - frame dropped")
}
}
// GetServerStats returns server performance statistics
func (s *AudioServer) GetServerStats() (total, dropped int64, bufferSize int64) {
return atomic.LoadInt64(&s.totalFrames),
atomic.LoadInt64(&s.droppedFrames),
atomic.LoadInt64(&s.bufferSize)
}
type AudioClient struct {
// Atomic fields must be first for proper alignment on ARM
droppedFrames int64 // Atomic counter for dropped frames
totalFrames int64 // Atomic counter for total frames
conn net.Conn
mtx sync.Mutex
running bool
}
func NewAudioClient() *AudioClient {
return &AudioClient{}
}
// Connect connects to the audio output server
func (c *AudioClient) Connect() error {
c.mtx.Lock()
defer c.mtx.Unlock()
if c.running {
return nil // Already connected
}
socketPath := getOutputSocketPath()
// Try connecting multiple times as the server might not be ready
// Reduced retry count and delay for faster startup
for i := 0; i < 8; i++ {
conn, err := net.Dial("unix", socketPath)
if err == nil {
c.conn = conn
c.running = true
return nil
}
// Exponential backoff starting at 50ms
delay := time.Duration(50*(1<<uint(i/3))) * time.Millisecond
if delay > 400*time.Millisecond {
delay = 400 * time.Millisecond
}
time.Sleep(delay)
}
return fmt.Errorf("failed to connect to audio output server")
}
// Disconnect disconnects from the audio output server
func (c *AudioClient) Disconnect() {
c.mtx.Lock()
defer c.mtx.Unlock()
if !c.running {
return
}
c.running = false
if c.conn != nil {
c.conn.Close()
c.conn = nil
}
}
// IsConnected returns whether the client is connected
func (c *AudioClient) IsConnected() bool {
c.mtx.Lock()
defer c.mtx.Unlock()
return c.running && c.conn != nil
}
func (c *AudioClient) Close() error {
c.Disconnect()
return nil
}
func (c *AudioClient) ReceiveFrame() ([]byte, error) {
c.mtx.Lock()
defer c.mtx.Unlock()
if !c.running || c.conn == nil {
return nil, fmt.Errorf("not connected")
}
// Get optimized message from pool for header reading
optMsg := globalOutputMessagePool.Get()
defer globalOutputMessagePool.Put(optMsg)
// Read header
if _, err := io.ReadFull(c.conn, optMsg.header[:]); err != nil {
return nil, fmt.Errorf("failed to read header: %w", err)
}
// Parse header
magic := binary.LittleEndian.Uint32(optMsg.header[0:4])
if magic != outputMagicNumber {
return nil, fmt.Errorf("invalid magic number: %x", magic)
}
msgType := OutputMessageType(optMsg.header[4])
if msgType != OutputMessageTypeOpusFrame {
return nil, fmt.Errorf("unexpected message type: %d", msgType)
}
size := binary.LittleEndian.Uint32(optMsg.header[5:9])
if size > outputMaxFrameSize {
return nil, fmt.Errorf("frame size %d exceeds maximum %d", size, outputMaxFrameSize)
}
// Read frame data
frame := make([]byte, size)
if size > 0 {
if _, err := io.ReadFull(c.conn, frame); err != nil {
return nil, fmt.Errorf("failed to read frame data: %w", err)
}
}
atomic.AddInt64(&c.totalFrames, 1)
return frame, nil
}
// GetClientStats returns client performance statistics
func (c *AudioClient) GetClientStats() (total, dropped int64) {
return atomic.LoadInt64(&c.totalFrames),
atomic.LoadInt64(&c.droppedFrames)
}
// Helper functions
// getOutputSocketPath returns the path to the output socket
func getOutputSocketPath() string {
if path := os.Getenv("JETKVM_AUDIO_OUTPUT_SOCKET"); path != "" {
return path
}
return filepath.Join("/var/run", outputSocketName)
}