kvm/internal/audio/input_ipc.go
Alex P 44a35aa5c2 feat(audio): add socket buffer configuration and monitoring
Add socket buffer configuration support with metrics collection for audio IPC connections. This improves performance monitoring and allows tuning socket buffers for optimal audio streaming performance.

- Introduce SocketBufferConfig struct with default and high-load presets
- Add socket buffer configuration to AudioServer and AudioInputServer
- Implement socket buffer metrics collection (size, utilization, overflow)
- Add new Prometheus metrics for socket buffer monitoring
2025-08-24 23:56:58 +00:00

962 lines
26 KiB
Go

package audio
import (
"context"
"encoding/binary"
"fmt"
"io"
"net"
"os"
"path/filepath"
"runtime"
"sync"
"sync/atomic"
"time"
"github.com/jetkvm/kvm/internal/logging"
)
const (
inputMagicNumber uint32 = 0x4A4B4D49 // "JKMI" (JetKVM Microphone Input)
inputSocketName = "audio_input.sock"
maxFrameSize = 4096 // Maximum Opus frame size
writeTimeout = 15 * time.Millisecond // Non-blocking write timeout (increased for high load)
maxDroppedFrames = 100 // Maximum consecutive dropped frames before reconnect
headerSize = 17 // Fixed header size: 4+1+4+8 bytes
messagePoolSize = 256 // Pre-allocated message pool size
)
// InputMessageType represents the type of IPC message
type InputMessageType uint8
const (
InputMessageTypeOpusFrame InputMessageType = iota
InputMessageTypeConfig
InputMessageTypeStop
InputMessageTypeHeartbeat
InputMessageTypeAck
)
// InputIPCMessage represents a message sent over IPC
type InputIPCMessage struct {
Magic uint32
Type InputMessageType
Length uint32
Timestamp int64
Data []byte
}
// OptimizedIPCMessage represents an optimized message with pre-allocated buffers
type OptimizedIPCMessage struct {
header [headerSize]byte // Pre-allocated header buffer
data []byte // Reusable data buffer
msg InputIPCMessage // Embedded message
}
// MessagePool manages a pool of reusable messages to reduce allocations
type MessagePool struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
hitCount int64 // Pool hit counter (atomic)
missCount int64 // Pool miss counter (atomic)
// Other fields
pool chan *OptimizedIPCMessage
// Memory optimization fields
preallocated []*OptimizedIPCMessage // Pre-allocated messages for immediate use
preallocSize int // Number of pre-allocated messages
maxPoolSize int // Maximum pool size to prevent memory bloat
mutex sync.RWMutex // Protects preallocated slice
}
// Global message pool instance
var globalMessagePool = &MessagePool{
pool: make(chan *OptimizedIPCMessage, messagePoolSize),
}
var messagePoolInitOnce sync.Once
// initializeMessagePool initializes the message pool with pre-allocated messages
func initializeMessagePool() {
messagePoolInitOnce.Do(func() {
// Pre-allocate 30% of pool size for immediate availability
preallocSize := messagePoolSize * 30 / 100
globalMessagePool.preallocSize = preallocSize
globalMessagePool.maxPoolSize = messagePoolSize * 2 // Allow growth up to 2x
globalMessagePool.preallocated = make([]*OptimizedIPCMessage, 0, preallocSize)
// Pre-allocate messages to reduce initial allocation overhead
for i := 0; i < preallocSize; i++ {
msg := &OptimizedIPCMessage{
data: make([]byte, 0, maxFrameSize),
}
globalMessagePool.preallocated = append(globalMessagePool.preallocated, msg)
}
// Fill the channel pool with remaining messages
for i := preallocSize; i < messagePoolSize; i++ {
globalMessagePool.pool <- &OptimizedIPCMessage{
data: make([]byte, 0, maxFrameSize),
}
}
})
}
// Get retrieves a message from the pool
func (mp *MessagePool) Get() *OptimizedIPCMessage {
initializeMessagePool()
// First try pre-allocated messages for fastest access
mp.mutex.Lock()
if len(mp.preallocated) > 0 {
msg := mp.preallocated[len(mp.preallocated)-1]
mp.preallocated = mp.preallocated[:len(mp.preallocated)-1]
mp.mutex.Unlock()
atomic.AddInt64(&mp.hitCount, 1)
return msg
}
mp.mutex.Unlock()
// Try channel pool next
select {
case msg := <-mp.pool:
atomic.AddInt64(&mp.hitCount, 1)
return msg
default:
// Pool exhausted, create new message
atomic.AddInt64(&mp.missCount, 1)
return &OptimizedIPCMessage{
data: make([]byte, 0, maxFrameSize),
}
}
}
// Put returns a message to the pool
func (mp *MessagePool) Put(msg *OptimizedIPCMessage) {
// Reset the message for reuse
msg.data = msg.data[:0]
msg.msg = InputIPCMessage{}
// First try to return to pre-allocated pool for fastest reuse
mp.mutex.Lock()
if len(mp.preallocated) < mp.preallocSize {
mp.preallocated = append(mp.preallocated, msg)
mp.mutex.Unlock()
return
}
mp.mutex.Unlock()
// Try channel pool next
select {
case mp.pool <- msg:
// Successfully returned to pool
default:
// Pool full, let GC handle it
}
}
// InputIPCConfig represents configuration for audio input
type InputIPCConfig struct {
SampleRate int
Channels int
FrameSize int
}
// AudioInputServer handles IPC communication for audio input processing
type AudioInputServer struct {
// Atomic fields must be first for proper alignment on ARM
bufferSize int64 // Current buffer size (atomic)
processingTime int64 // Average processing time in nanoseconds (atomic)
droppedFrames int64 // Dropped frames counter (atomic)
totalFrames int64 // Total frames counter (atomic)
listener net.Listener
conn net.Conn
mtx sync.Mutex
running bool
// Triple-goroutine architecture
messageChan chan *InputIPCMessage // Buffered channel for incoming messages
processChan chan *InputIPCMessage // Buffered channel for processing queue
stopChan chan struct{} // Stop signal for all goroutines
wg sync.WaitGroup // Wait group for goroutine coordination
// Socket buffer configuration
socketBufferConfig SocketBufferConfig
}
// NewAudioInputServer creates a new audio input server
func NewAudioInputServer() (*AudioInputServer, error) {
socketPath := getInputSocketPath()
// Remove existing socket if any
os.Remove(socketPath)
listener, err := net.Listen("unix", socketPath)
if err != nil {
return nil, fmt.Errorf("failed to create unix socket: %w", err)
}
// Get initial buffer size from adaptive buffer manager
adaptiveManager := GetAdaptiveBufferManager()
initialBufferSize := int64(adaptiveManager.GetInputBufferSize())
// Initialize socket buffer configuration
socketBufferConfig := DefaultSocketBufferConfig()
return &AudioInputServer{
listener: listener,
messageChan: make(chan *InputIPCMessage, initialBufferSize),
processChan: make(chan *InputIPCMessage, initialBufferSize),
stopChan: make(chan struct{}),
bufferSize: initialBufferSize,
socketBufferConfig: socketBufferConfig,
}, nil
}
// Start starts the audio input server
func (ais *AudioInputServer) Start() error {
ais.mtx.Lock()
defer ais.mtx.Unlock()
if ais.running {
return fmt.Errorf("server already running")
}
ais.running = true
// Start triple-goroutine architecture
ais.startReaderGoroutine()
ais.startProcessorGoroutine()
ais.startMonitorGoroutine()
// Accept connections in a goroutine
go ais.acceptConnections()
return nil
}
// Stop stops the audio input server
func (ais *AudioInputServer) Stop() {
ais.mtx.Lock()
defer ais.mtx.Unlock()
if !ais.running {
return
}
ais.running = false
// Signal all goroutines to stop
close(ais.stopChan)
ais.wg.Wait()
if ais.conn != nil {
ais.conn.Close()
ais.conn = nil
}
if ais.listener != nil {
ais.listener.Close()
}
}
// Close closes the server and cleans up resources
func (ais *AudioInputServer) Close() {
ais.Stop()
// Remove socket file
os.Remove(getInputSocketPath())
}
// acceptConnections accepts incoming connections
func (ais *AudioInputServer) acceptConnections() {
for ais.running {
conn, err := ais.listener.Accept()
if err != nil {
if ais.running {
// Only log error if we're still supposed to be running
continue
}
return
}
// Configure socket buffers for optimal performance
if err := ConfigureSocketBuffers(conn, ais.socketBufferConfig); err != nil {
// Log warning but don't fail - socket buffer optimization is not critical
logger := logging.GetDefaultLogger().With().Str("component", "audio-input-server").Logger()
logger.Warn().Err(err).Msg("Failed to configure socket buffers, continuing with defaults")
} else {
// Record socket buffer metrics for monitoring
RecordSocketBufferMetrics(conn, "audio-input")
}
ais.mtx.Lock()
// Close existing connection if any
if ais.conn != nil {
ais.conn.Close()
}
ais.conn = conn
ais.mtx.Unlock()
// Handle this connection
go ais.handleConnection(conn)
}
}
// handleConnection handles a single client connection
func (ais *AudioInputServer) handleConnection(conn net.Conn) {
defer conn.Close()
// Connection is now handled by the reader goroutine
// Just wait for connection to close or stop signal
for {
select {
case <-ais.stopChan:
return
default:
// Check if connection is still alive
if ais.conn == nil {
return
}
time.Sleep(100 * time.Millisecond)
}
}
}
// readMessage reads a complete message from the connection
func (ais *AudioInputServer) readMessage(conn net.Conn) (*InputIPCMessage, error) {
// Get optimized message from pool
optMsg := globalMessagePool.Get()
defer globalMessagePool.Put(optMsg)
// Read header directly into pre-allocated buffer
_, err := io.ReadFull(conn, optMsg.header[:])
if err != nil {
return nil, err
}
// Parse header using optimized access
msg := &optMsg.msg
msg.Magic = binary.LittleEndian.Uint32(optMsg.header[0:4])
msg.Type = InputMessageType(optMsg.header[4])
msg.Length = binary.LittleEndian.Uint32(optMsg.header[5:9])
msg.Timestamp = int64(binary.LittleEndian.Uint64(optMsg.header[9:17]))
// Validate magic number
if msg.Magic != inputMagicNumber {
return nil, fmt.Errorf("invalid magic number: %x", msg.Magic)
}
// Validate message length
if msg.Length > maxFrameSize {
return nil, fmt.Errorf("message too large: %d bytes", msg.Length)
}
// Read data if present using pooled buffer
if msg.Length > 0 {
// Ensure buffer capacity
if cap(optMsg.data) < int(msg.Length) {
optMsg.data = make([]byte, msg.Length)
} else {
optMsg.data = optMsg.data[:msg.Length]
}
_, err = io.ReadFull(conn, optMsg.data)
if err != nil {
return nil, err
}
msg.Data = optMsg.data
}
// Return a copy of the message (data will be copied by caller if needed)
result := &InputIPCMessage{
Magic: msg.Magic,
Type: msg.Type,
Length: msg.Length,
Timestamp: msg.Timestamp,
}
if msg.Length > 0 {
// Copy data to ensure it's not affected by buffer reuse
result.Data = make([]byte, msg.Length)
copy(result.Data, msg.Data)
}
return result, nil
}
// processMessage processes a received message
func (ais *AudioInputServer) processMessage(msg *InputIPCMessage) error {
switch msg.Type {
case InputMessageTypeOpusFrame:
return ais.processOpusFrame(msg.Data)
case InputMessageTypeConfig:
return ais.processConfig(msg.Data)
case InputMessageTypeStop:
return fmt.Errorf("stop message received")
case InputMessageTypeHeartbeat:
return ais.sendAck()
default:
return fmt.Errorf("unknown message type: %d", msg.Type)
}
}
// processOpusFrame processes an Opus audio frame
func (ais *AudioInputServer) processOpusFrame(data []byte) error {
if len(data) == 0 {
return nil // Empty frame, ignore
}
// Process the Opus frame using CGO
_, err := CGOAudioDecodeWrite(data)
return err
}
// processConfig processes a configuration update
func (ais *AudioInputServer) processConfig(data []byte) error {
// Acknowledge configuration receipt
return ais.sendAck()
}
// sendAck sends an acknowledgment message
func (ais *AudioInputServer) sendAck() error {
ais.mtx.Lock()
defer ais.mtx.Unlock()
if ais.conn == nil {
return fmt.Errorf("no connection")
}
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeAck,
Length: 0,
Timestamp: time.Now().UnixNano(),
}
return ais.writeMessage(ais.conn, msg)
}
// writeMessage writes a message to the connection using optimized buffers
func (ais *AudioInputServer) writeMessage(conn net.Conn, msg *InputIPCMessage) error {
// Get optimized message from pool for header preparation
optMsg := globalMessagePool.Get()
defer globalMessagePool.Put(optMsg)
// Prepare header in pre-allocated buffer
binary.LittleEndian.PutUint32(optMsg.header[0:4], msg.Magic)
optMsg.header[4] = byte(msg.Type)
binary.LittleEndian.PutUint32(optMsg.header[5:9], msg.Length)
binary.LittleEndian.PutUint64(optMsg.header[9:17], uint64(msg.Timestamp))
// Write header
_, err := conn.Write(optMsg.header[:])
if err != nil {
return err
}
// Write data if present
if msg.Length > 0 && msg.Data != nil {
_, err = conn.Write(msg.Data)
if err != nil {
return err
}
}
return nil
}
// AudioInputClient handles IPC communication from the main process
type AudioInputClient struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
droppedFrames int64 // Atomic counter for dropped frames
totalFrames int64 // Atomic counter for total frames
conn net.Conn
mtx sync.Mutex
running bool
}
// NewAudioInputClient creates a new audio input client
func NewAudioInputClient() *AudioInputClient {
return &AudioInputClient{}
}
// Connect connects to the audio input server
func (aic *AudioInputClient) Connect() error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if aic.running {
return nil // Already connected
}
socketPath := getInputSocketPath()
// Try connecting multiple times as the server might not be ready
// Reduced retry count and delay for faster startup
for i := 0; i < 10; i++ {
conn, err := net.Dial("unix", socketPath)
if err == nil {
aic.conn = conn
aic.running = true
return nil
}
// Exponential backoff starting at 50ms
delay := time.Duration(50*(1<<uint(i/3))) * time.Millisecond
if delay > 500*time.Millisecond {
delay = 500 * time.Millisecond
}
time.Sleep(delay)
}
return fmt.Errorf("failed to connect to audio input server")
}
// Disconnect disconnects from the audio input server
func (aic *AudioInputClient) Disconnect() {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running {
return
}
aic.running = false
if aic.conn != nil {
// Send stop message
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeStop,
Length: 0,
Timestamp: time.Now().UnixNano(),
}
_ = aic.writeMessage(msg) // Ignore errors during shutdown
aic.conn.Close()
aic.conn = nil
}
}
// SendFrame sends an Opus frame to the audio input server
func (aic *AudioInputClient) SendFrame(frame []byte) error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected")
}
if len(frame) == 0 {
return nil // Empty frame, ignore
}
if len(frame) > maxFrameSize {
return fmt.Errorf("frame too large: %d bytes", len(frame))
}
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeOpusFrame,
Length: uint32(len(frame)),
Timestamp: time.Now().UnixNano(),
Data: frame,
}
return aic.writeMessage(msg)
}
// SendFrameZeroCopy sends a zero-copy Opus frame to the audio input server
func (aic *AudioInputClient) SendFrameZeroCopy(frame *ZeroCopyAudioFrame) error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected")
}
if frame == nil || frame.Length() == 0 {
return nil // Empty frame, ignore
}
if frame.Length() > maxFrameSize {
return fmt.Errorf("frame too large: %d bytes", frame.Length())
}
// Use zero-copy data directly
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeOpusFrame,
Length: uint32(frame.Length()),
Timestamp: time.Now().UnixNano(),
Data: frame.Data(), // Zero-copy data access
}
return aic.writeMessage(msg)
}
// SendConfig sends a configuration update to the audio input server
func (aic *AudioInputClient) SendConfig(config InputIPCConfig) error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected")
}
// Serialize config (simple binary format)
data := make([]byte, 12) // 3 * int32
binary.LittleEndian.PutUint32(data[0:4], uint32(config.SampleRate))
binary.LittleEndian.PutUint32(data[4:8], uint32(config.Channels))
binary.LittleEndian.PutUint32(data[8:12], uint32(config.FrameSize))
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeConfig,
Length: uint32(len(data)),
Timestamp: time.Now().UnixNano(),
Data: data,
}
return aic.writeMessage(msg)
}
// SendHeartbeat sends a heartbeat message
func (aic *AudioInputClient) SendHeartbeat() error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected")
}
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeHeartbeat,
Length: 0,
Timestamp: time.Now().UnixNano(),
}
return aic.writeMessage(msg)
}
// writeMessage writes a message to the server
func (aic *AudioInputClient) writeMessage(msg *InputIPCMessage) error {
// Increment total frames counter
atomic.AddInt64(&aic.totalFrames, 1)
// Get optimized message from pool for header preparation
optMsg := globalMessagePool.Get()
defer globalMessagePool.Put(optMsg)
// Prepare header in pre-allocated buffer
binary.LittleEndian.PutUint32(optMsg.header[0:4], msg.Magic)
optMsg.header[4] = byte(msg.Type)
binary.LittleEndian.PutUint32(optMsg.header[5:9], msg.Length)
binary.LittleEndian.PutUint64(optMsg.header[9:17], uint64(msg.Timestamp))
// Use non-blocking write with timeout
ctx, cancel := context.WithTimeout(context.Background(), writeTimeout)
defer cancel()
// Create a channel to signal write completion
done := make(chan error, 1)
go func() {
// Write header using pre-allocated buffer
_, err := aic.conn.Write(optMsg.header[:])
if err != nil {
done <- err
return
}
// Write data if present
if msg.Length > 0 && msg.Data != nil {
_, err = aic.conn.Write(msg.Data)
if err != nil {
done <- err
return
}
}
done <- nil
}()
// Wait for completion or timeout
select {
case err := <-done:
if err != nil {
atomic.AddInt64(&aic.droppedFrames, 1)
return err
}
return nil
case <-ctx.Done():
// Timeout occurred - drop frame to prevent blocking
atomic.AddInt64(&aic.droppedFrames, 1)
return fmt.Errorf("write timeout - frame dropped")
}
}
// IsConnected returns whether the client is connected
func (aic *AudioInputClient) IsConnected() bool {
aic.mtx.Lock()
defer aic.mtx.Unlock()
return aic.running && aic.conn != nil
}
// GetFrameStats returns frame statistics
func (aic *AudioInputClient) GetFrameStats() (total, dropped int64) {
return atomic.LoadInt64(&aic.totalFrames), atomic.LoadInt64(&aic.droppedFrames)
}
// GetDropRate returns the current frame drop rate as a percentage
func (aic *AudioInputClient) GetDropRate() float64 {
total := atomic.LoadInt64(&aic.totalFrames)
dropped := atomic.LoadInt64(&aic.droppedFrames)
if total == 0 {
return 0.0
}
return float64(dropped) / float64(total) * 100.0
}
// ResetStats resets frame statistics
func (aic *AudioInputClient) ResetStats() {
atomic.StoreInt64(&aic.totalFrames, 0)
atomic.StoreInt64(&aic.droppedFrames, 0)
}
// startReaderGoroutine starts the message reader goroutine
func (ais *AudioInputServer) startReaderGoroutine() {
ais.wg.Add(1)
go func() {
defer ais.wg.Done()
for {
select {
case <-ais.stopChan:
return
default:
if ais.conn != nil {
msg, err := ais.readMessage(ais.conn)
if err != nil {
continue // Connection error, retry
}
// Send to message channel with non-blocking write
select {
case ais.messageChan <- msg:
atomic.AddInt64(&ais.totalFrames, 1)
default:
// Channel full, drop message
atomic.AddInt64(&ais.droppedFrames, 1)
}
}
}
}
}()
}
// startProcessorGoroutine starts the message processor goroutine
func (ais *AudioInputServer) startProcessorGoroutine() {
ais.wg.Add(1)
go func() {
runtime.LockOSThread()
defer runtime.UnlockOSThread()
// Set high priority for audio processing
logger := logging.GetDefaultLogger().With().Str("component", "audio-input-processor").Logger()
if err := SetAudioThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to set audio processing priority")
}
defer func() {
if err := ResetThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to reset thread priority")
}
}()
defer ais.wg.Done()
for {
select {
case <-ais.stopChan:
return
case msg := <-ais.messageChan:
// Intelligent frame dropping: prioritize recent frames
if msg.Type == InputMessageTypeOpusFrame {
// Check if processing queue is getting full
queueLen := len(ais.processChan)
bufferSize := int(atomic.LoadInt64(&ais.bufferSize))
if queueLen > bufferSize*3/4 {
// Drop oldest frames, keep newest
select {
case <-ais.processChan: // Remove oldest
atomic.AddInt64(&ais.droppedFrames, 1)
default:
}
}
}
// Send to processing queue
select {
case ais.processChan <- msg:
default:
// Processing queue full, drop frame
atomic.AddInt64(&ais.droppedFrames, 1)
}
}
}
}()
}
// startMonitorGoroutine starts the performance monitoring goroutine
func (ais *AudioInputServer) startMonitorGoroutine() {
ais.wg.Add(1)
go func() {
runtime.LockOSThread()
defer runtime.UnlockOSThread()
// Set I/O priority for monitoring
logger := logging.GetDefaultLogger().With().Str("component", "audio-input-monitor").Logger()
if err := SetAudioIOThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to set audio I/O priority")
}
defer func() {
if err := ResetThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to reset thread priority")
}
}()
defer ais.wg.Done()
ticker := time.NewTicker(100 * time.Millisecond)
defer ticker.Stop()
// Buffer size update ticker (less frequent)
bufferUpdateTicker := time.NewTicker(500 * time.Millisecond)
defer bufferUpdateTicker.Stop()
for {
select {
case <-ais.stopChan:
return
case <-ticker.C:
// Process frames from processing queue
for {
select {
case msg := <-ais.processChan:
start := time.Now()
err := ais.processMessage(msg)
processingTime := time.Since(start)
// Calculate end-to-end latency using message timestamp
var latency time.Duration
if msg.Type == InputMessageTypeOpusFrame && msg.Timestamp > 0 {
msgTime := time.Unix(0, msg.Timestamp)
latency = time.Since(msgTime)
// Use exponential moving average for end-to-end latency tracking
currentAvg := atomic.LoadInt64(&ais.processingTime)
// Weight: 90% historical, 10% current (for smoother averaging)
newAvg := (currentAvg*9 + latency.Nanoseconds()) / 10
atomic.StoreInt64(&ais.processingTime, newAvg)
} else {
// Fallback to processing time only
latency = processingTime
currentAvg := atomic.LoadInt64(&ais.processingTime)
newAvg := (currentAvg + processingTime.Nanoseconds()) / 2
atomic.StoreInt64(&ais.processingTime, newAvg)
}
// Report latency to adaptive buffer manager
ais.ReportLatency(latency)
if err != nil {
atomic.AddInt64(&ais.droppedFrames, 1)
}
default:
// No more messages to process
goto checkBufferUpdate
}
}
checkBufferUpdate:
// Check if we need to update buffer size
select {
case <-bufferUpdateTicker.C:
// Update buffer size from adaptive buffer manager
ais.UpdateBufferSize()
default:
// No buffer update needed
}
}
}
}()
}
// GetServerStats returns server performance statistics
func (ais *AudioInputServer) GetServerStats() (total, dropped int64, avgProcessingTime time.Duration, bufferSize int64) {
return atomic.LoadInt64(&ais.totalFrames),
atomic.LoadInt64(&ais.droppedFrames),
time.Duration(atomic.LoadInt64(&ais.processingTime)),
atomic.LoadInt64(&ais.bufferSize)
}
// UpdateBufferSize updates the buffer size from adaptive buffer manager
func (ais *AudioInputServer) UpdateBufferSize() {
adaptiveManager := GetAdaptiveBufferManager()
newSize := int64(adaptiveManager.GetInputBufferSize())
atomic.StoreInt64(&ais.bufferSize, newSize)
}
// ReportLatency reports processing latency to adaptive buffer manager
func (ais *AudioInputServer) ReportLatency(latency time.Duration) {
adaptiveManager := GetAdaptiveBufferManager()
adaptiveManager.UpdateLatency(latency)
}
// GetMessagePoolStats returns detailed statistics about the message pool
func (mp *MessagePool) GetMessagePoolStats() MessagePoolStats {
mp.mutex.RLock()
preallocatedCount := len(mp.preallocated)
mp.mutex.RUnlock()
hitCount := atomic.LoadInt64(&mp.hitCount)
missCount := atomic.LoadInt64(&mp.missCount)
totalRequests := hitCount + missCount
var hitRate float64
if totalRequests > 0 {
hitRate = float64(hitCount) / float64(totalRequests) * 100
}
// Calculate channel pool size
channelPoolSize := len(mp.pool)
return MessagePoolStats{
MaxPoolSize: mp.maxPoolSize,
ChannelPoolSize: channelPoolSize,
PreallocatedCount: int64(preallocatedCount),
PreallocatedMax: int64(mp.preallocSize),
HitCount: hitCount,
MissCount: missCount,
HitRate: hitRate,
}
}
// MessagePoolStats provides detailed message pool statistics
type MessagePoolStats struct {
MaxPoolSize int
ChannelPoolSize int
PreallocatedCount int64
PreallocatedMax int64
HitCount int64
MissCount int64
HitRate float64 // Percentage
}
// GetGlobalMessagePoolStats returns statistics for the global message pool
func GetGlobalMessagePoolStats() MessagePoolStats {
return globalMessagePool.GetMessagePoolStats()
}
// Helper functions
// getInputSocketPath returns the path to the input socket
func getInputSocketPath() string {
if path := os.Getenv("JETKVM_AUDIO_INPUT_SOCKET"); path != "" {
return path
}
return filepath.Join("/var/run", inputSocketName)
}