kvm/internal/audio/buffer_pool.go
Alex P 35a666ed31 refactor(audio): centralize configuration constants in audio module
Replace hardcoded values with centralized config constants for better maintainability and flexibility. This includes sleep durations, buffer sizes, thresholds, and various audio processing parameters.

The changes affect multiple components including buffer pools, latency monitoring, IPC, and audio processing. This refactoring makes it easier to adjust parameters without modifying individual files.

Key changes:
- Replace hardcoded sleep durations with config values
- Centralize buffer sizes and pool configurations
- Move thresholds and limits to config
- Update audio quality presets to use config values
2025-08-25 18:08:12 +00:00

213 lines
5.5 KiB
Go

package audio
import (
"sync"
"sync/atomic"
)
type AudioBufferPool struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
currentSize int64 // Current pool size (atomic)
hitCount int64 // Pool hit counter (atomic)
missCount int64 // Pool miss counter (atomic)
// Other fields
pool sync.Pool
bufferSize int
maxPoolSize int
mutex sync.RWMutex
// Memory optimization fields
preallocated []*[]byte // Pre-allocated buffers for immediate use
preallocSize int // Number of pre-allocated buffers
}
func NewAudioBufferPool(bufferSize int) *AudioBufferPool {
// Pre-allocate 20% of max pool size for immediate availability
preallocSize := GetConfig().PreallocPercentage
preallocated := make([]*[]byte, 0, preallocSize)
// Pre-allocate buffers to reduce initial allocation overhead
for i := 0; i < preallocSize; i++ {
buf := make([]byte, 0, bufferSize)
preallocated = append(preallocated, &buf)
}
return &AudioBufferPool{
bufferSize: bufferSize,
maxPoolSize: GetConfig().MaxPoolSize, // Limit pool size to prevent excessive memory usage
preallocated: preallocated,
preallocSize: preallocSize,
pool: sync.Pool{
New: func() interface{} {
return make([]byte, 0, bufferSize)
},
},
}
}
func (p *AudioBufferPool) Get() []byte {
// First try pre-allocated buffers for fastest access
p.mutex.Lock()
if len(p.preallocated) > 0 {
buf := p.preallocated[len(p.preallocated)-1]
p.preallocated = p.preallocated[:len(p.preallocated)-1]
p.mutex.Unlock()
atomic.AddInt64(&p.hitCount, 1)
return (*buf)[:0] // Reset length but keep capacity
}
p.mutex.Unlock()
// Try sync.Pool next
if buf := p.pool.Get(); buf != nil {
bufPtr := buf.(*[]byte)
// Update pool size counter when retrieving from pool
p.mutex.Lock()
if p.currentSize > 0 {
p.currentSize--
}
p.mutex.Unlock()
atomic.AddInt64(&p.hitCount, 1)
return (*bufPtr)[:0] // Reset length but keep capacity
}
// Last resort: allocate new buffer
atomic.AddInt64(&p.missCount, 1)
return make([]byte, 0, p.bufferSize)
}
func (p *AudioBufferPool) Put(buf []byte) {
if cap(buf) < p.bufferSize {
return // Buffer too small, don't pool it
}
// Reset buffer for reuse
resetBuf := buf[:0]
// First try to return to pre-allocated pool for fastest reuse
p.mutex.Lock()
if len(p.preallocated) < p.preallocSize {
p.preallocated = append(p.preallocated, &resetBuf)
p.mutex.Unlock()
return
}
p.mutex.Unlock()
// Check sync.Pool size limit to prevent excessive memory usage
p.mutex.RLock()
currentSize := p.currentSize
p.mutex.RUnlock()
if currentSize >= int64(p.maxPoolSize) {
return // Pool is full, let GC handle this buffer
}
// Return to sync.Pool
p.pool.Put(&resetBuf)
// Update pool size counter
p.mutex.Lock()
p.currentSize++
p.mutex.Unlock()
}
var (
audioFramePool = NewAudioBufferPool(GetConfig().AudioFramePoolSize)
audioControlPool = NewAudioBufferPool(GetConfig().OutputHeaderSize)
)
func GetAudioFrameBuffer() []byte {
return audioFramePool.Get()
}
func PutAudioFrameBuffer(buf []byte) {
audioFramePool.Put(buf)
}
func GetAudioControlBuffer() []byte {
return audioControlPool.Get()
}
func PutAudioControlBuffer(buf []byte) {
audioControlPool.Put(buf)
}
// GetPoolStats returns detailed statistics about this buffer pool
func (p *AudioBufferPool) GetPoolStats() AudioBufferPoolDetailedStats {
p.mutex.RLock()
preallocatedCount := len(p.preallocated)
currentSize := p.currentSize
p.mutex.RUnlock()
hitCount := atomic.LoadInt64(&p.hitCount)
missCount := atomic.LoadInt64(&p.missCount)
totalRequests := hitCount + missCount
var hitRate float64
if totalRequests > 0 {
hitRate = float64(hitCount) / float64(totalRequests) * GetConfig().PercentageMultiplier
}
return AudioBufferPoolDetailedStats{
BufferSize: p.bufferSize,
MaxPoolSize: p.maxPoolSize,
CurrentPoolSize: currentSize,
PreallocatedCount: int64(preallocatedCount),
PreallocatedMax: int64(p.preallocSize),
HitCount: hitCount,
MissCount: missCount,
HitRate: hitRate,
}
}
// AudioBufferPoolDetailedStats provides detailed pool statistics
type AudioBufferPoolDetailedStats struct {
BufferSize int
MaxPoolSize int
CurrentPoolSize int64
PreallocatedCount int64
PreallocatedMax int64
HitCount int64
MissCount int64
HitRate float64 // Percentage
}
// GetAudioBufferPoolStats returns statistics about the audio buffer pools
type AudioBufferPoolStats struct {
FramePoolSize int64
FramePoolMax int
ControlPoolSize int64
ControlPoolMax int
// Enhanced statistics
FramePoolHitRate float64
ControlPoolHitRate float64
FramePoolDetails AudioBufferPoolDetailedStats
ControlPoolDetails AudioBufferPoolDetailedStats
}
func GetAudioBufferPoolStats() AudioBufferPoolStats {
audioFramePool.mutex.RLock()
frameSize := audioFramePool.currentSize
frameMax := audioFramePool.maxPoolSize
audioFramePool.mutex.RUnlock()
audioControlPool.mutex.RLock()
controlSize := audioControlPool.currentSize
controlMax := audioControlPool.maxPoolSize
audioControlPool.mutex.RUnlock()
// Get detailed statistics
frameDetails := audioFramePool.GetPoolStats()
controlDetails := audioControlPool.GetPoolStats()
return AudioBufferPoolStats{
FramePoolSize: frameSize,
FramePoolMax: frameMax,
ControlPoolSize: controlSize,
ControlPoolMax: controlMax,
FramePoolHitRate: frameDetails.HitRate,
ControlPoolHitRate: controlDetails.HitRate,
FramePoolDetails: frameDetails,
ControlPoolDetails: controlDetails,
}
}