kvm/internal/audio/adaptive_buffer.go
Alex P 35a666ed31 refactor(audio): centralize configuration constants in audio module
Replace hardcoded values with centralized config constants for better maintainability and flexibility. This includes sleep durations, buffer sizes, thresholds, and various audio processing parameters.

The changes affect multiple components including buffer pools, latency monitoring, IPC, and audio processing. This refactoring makes it easier to adjust parameters without modifying individual files.

Key changes:
- Replace hardcoded sleep durations with config values
- Centralize buffer sizes and pool configurations
- Move thresholds and limits to config
- Update audio quality presets to use config values
2025-08-25 18:08:12 +00:00

339 lines
12 KiB
Go

package audio
import (
"context"
"math"
"sync"
"sync/atomic"
"time"
"github.com/jetkvm/kvm/internal/logging"
"github.com/rs/zerolog"
)
// AdaptiveBufferConfig holds configuration for adaptive buffer sizing
type AdaptiveBufferConfig struct {
// Buffer size limits (in frames)
MinBufferSize int
MaxBufferSize int
DefaultBufferSize int
// System load thresholds
LowCPUThreshold float64 // Below this, increase buffer size
HighCPUThreshold float64 // Above this, decrease buffer size
LowMemoryThreshold float64 // Below this, increase buffer size
HighMemoryThreshold float64 // Above this, decrease buffer size
// Latency thresholds (in milliseconds)
TargetLatency time.Duration
MaxLatency time.Duration
// Adaptation parameters
AdaptationInterval time.Duration
SmoothingFactor float64 // 0.0-1.0, higher = more responsive
}
// DefaultAdaptiveBufferConfig returns optimized config for JetKVM hardware
func DefaultAdaptiveBufferConfig() AdaptiveBufferConfig {
return AdaptiveBufferConfig{
// Conservative buffer sizes for 256MB RAM constraint
MinBufferSize: 3, // Minimum 3 frames (slightly higher for stability)
MaxBufferSize: 20, // Maximum 20 frames (increased for high load scenarios)
DefaultBufferSize: 6, // Default 6 frames (increased for better stability)
// CPU thresholds optimized for single-core ARM Cortex A7 under load
LowCPUThreshold: GetConfig().LowCPUThreshold * 100, // Below 20% CPU
HighCPUThreshold: GetConfig().HighCPUThreshold * 100, // Above 60% CPU (lowered to be more responsive)
// Memory thresholds for 256MB total RAM
LowMemoryThreshold: GetConfig().LowMemoryThreshold * 100, // Below 35% memory usage
HighMemoryThreshold: GetConfig().HighMemoryThreshold * 100, // Above 75% memory usage (lowered for earlier response)
// Latency targets
TargetLatency: GetConfig().TargetLatency, // Target 20ms latency
MaxLatency: GetConfig().MaxLatencyTarget, // Max acceptable latency
// Adaptation settings
AdaptationInterval: GetConfig().BufferUpdateInterval, // Check every 500ms
SmoothingFactor: GetConfig().SmoothingFactor, // Moderate responsiveness
}
}
// AdaptiveBufferManager manages dynamic buffer sizing based on system conditions
type AdaptiveBufferManager struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
currentInputBufferSize int64 // Current input buffer size (atomic)
currentOutputBufferSize int64 // Current output buffer size (atomic)
averageLatency int64 // Average latency in nanoseconds (atomic)
systemCPUPercent int64 // System CPU percentage * 100 (atomic)
systemMemoryPercent int64 // System memory percentage * 100 (atomic)
adaptationCount int64 // Metrics tracking (atomic)
config AdaptiveBufferConfig
logger zerolog.Logger
processMonitor *ProcessMonitor
// Control channels
ctx context.Context
cancel context.CancelFunc
wg sync.WaitGroup
// Metrics tracking
lastAdaptation time.Time
mutex sync.RWMutex
}
// NewAdaptiveBufferManager creates a new adaptive buffer manager
func NewAdaptiveBufferManager(config AdaptiveBufferConfig) *AdaptiveBufferManager {
ctx, cancel := context.WithCancel(context.Background())
return &AdaptiveBufferManager{
currentInputBufferSize: int64(config.DefaultBufferSize),
currentOutputBufferSize: int64(config.DefaultBufferSize),
config: config,
logger: logging.GetDefaultLogger().With().Str("component", "adaptive-buffer").Logger(),
processMonitor: GetProcessMonitor(),
ctx: ctx,
cancel: cancel,
lastAdaptation: time.Now(),
}
}
// Start begins the adaptive buffer management
func (abm *AdaptiveBufferManager) Start() {
abm.wg.Add(1)
go abm.adaptationLoop()
abm.logger.Info().Msg("Adaptive buffer manager started")
}
// Stop stops the adaptive buffer management
func (abm *AdaptiveBufferManager) Stop() {
abm.cancel()
abm.wg.Wait()
abm.logger.Info().Msg("Adaptive buffer manager stopped")
}
// GetInputBufferSize returns the current recommended input buffer size
func (abm *AdaptiveBufferManager) GetInputBufferSize() int {
return int(atomic.LoadInt64(&abm.currentInputBufferSize))
}
// GetOutputBufferSize returns the current recommended output buffer size
func (abm *AdaptiveBufferManager) GetOutputBufferSize() int {
return int(atomic.LoadInt64(&abm.currentOutputBufferSize))
}
// UpdateLatency updates the current latency measurement
func (abm *AdaptiveBufferManager) UpdateLatency(latency time.Duration) {
// Use exponential moving average for latency
currentAvg := atomic.LoadInt64(&abm.averageLatency)
newLatency := latency.Nanoseconds()
if currentAvg == 0 {
atomic.StoreInt64(&abm.averageLatency, newLatency)
} else {
// Exponential moving average: 70% historical, 30% current
newAvg := int64(float64(currentAvg)*GetConfig().HistoricalWeight + float64(newLatency)*GetConfig().CurrentWeight)
atomic.StoreInt64(&abm.averageLatency, newAvg)
}
}
// adaptationLoop is the main loop that adjusts buffer sizes
func (abm *AdaptiveBufferManager) adaptationLoop() {
defer abm.wg.Done()
ticker := time.NewTicker(abm.config.AdaptationInterval)
defer ticker.Stop()
for {
select {
case <-abm.ctx.Done():
return
case <-ticker.C:
abm.adaptBufferSizes()
}
}
}
// adaptBufferSizes analyzes system conditions and adjusts buffer sizes
func (abm *AdaptiveBufferManager) adaptBufferSizes() {
// Collect current system metrics
metrics := abm.processMonitor.GetCurrentMetrics()
if len(metrics) == 0 {
return // No metrics available
}
// Calculate system-wide CPU and memory usage
totalCPU := 0.0
totalMemory := 0.0
processCount := 0
for _, metric := range metrics {
totalCPU += metric.CPUPercent
totalMemory += metric.MemoryPercent
processCount++
}
if processCount == 0 {
return
}
// Store system metrics atomically
systemCPU := totalCPU // Total CPU across all monitored processes
systemMemory := totalMemory / float64(processCount) // Average memory usage
atomic.StoreInt64(&abm.systemCPUPercent, int64(systemCPU*100))
atomic.StoreInt64(&abm.systemMemoryPercent, int64(systemMemory*100))
// Get current latency
currentLatencyNs := atomic.LoadInt64(&abm.averageLatency)
currentLatency := time.Duration(currentLatencyNs)
// Calculate adaptation factors
cpuFactor := abm.calculateCPUFactor(systemCPU)
memoryFactor := abm.calculateMemoryFactor(systemMemory)
latencyFactor := abm.calculateLatencyFactor(currentLatency)
// Combine factors with weights (CPU has highest priority for KVM coexistence)
combinedFactor := GetConfig().CPUMemoryWeight*cpuFactor + GetConfig().MemoryWeight*memoryFactor + GetConfig().LatencyWeight*latencyFactor
// Apply adaptation with smoothing
currentInput := float64(atomic.LoadInt64(&abm.currentInputBufferSize))
currentOutput := float64(atomic.LoadInt64(&abm.currentOutputBufferSize))
// Calculate new buffer sizes
newInputSize := abm.applyAdaptation(currentInput, combinedFactor)
newOutputSize := abm.applyAdaptation(currentOutput, combinedFactor)
// Update buffer sizes if they changed significantly
adjustmentMade := false
if math.Abs(newInputSize-currentInput) >= 0.5 || math.Abs(newOutputSize-currentOutput) >= 0.5 {
atomic.StoreInt64(&abm.currentInputBufferSize, int64(math.Round(newInputSize)))
atomic.StoreInt64(&abm.currentOutputBufferSize, int64(math.Round(newOutputSize)))
atomic.AddInt64(&abm.adaptationCount, 1)
abm.mutex.Lock()
abm.lastAdaptation = time.Now()
abm.mutex.Unlock()
adjustmentMade = true
abm.logger.Debug().
Float64("cpu_percent", systemCPU).
Float64("memory_percent", systemMemory).
Dur("latency", currentLatency).
Float64("combined_factor", combinedFactor).
Int("new_input_size", int(newInputSize)).
Int("new_output_size", int(newOutputSize)).
Msg("Adapted buffer sizes")
}
// Update metrics with current state
currentInputSize := int(atomic.LoadInt64(&abm.currentInputBufferSize))
currentOutputSize := int(atomic.LoadInt64(&abm.currentOutputBufferSize))
UpdateAdaptiveBufferMetrics(currentInputSize, currentOutputSize, systemCPU, systemMemory, adjustmentMade)
}
// calculateCPUFactor returns adaptation factor based on CPU usage
// Returns: -1.0 (decrease buffers) to +1.0 (increase buffers)
func (abm *AdaptiveBufferManager) calculateCPUFactor(cpuPercent float64) float64 {
if cpuPercent > abm.config.HighCPUThreshold {
// High CPU: decrease buffers to reduce latency and give CPU to KVM
return -1.0
} else if cpuPercent < abm.config.LowCPUThreshold {
// Low CPU: increase buffers for better quality
return 1.0
}
// Medium CPU: linear interpolation
midpoint := (abm.config.HighCPUThreshold + abm.config.LowCPUThreshold) / 2
return (midpoint - cpuPercent) / (midpoint - abm.config.LowCPUThreshold)
}
// calculateMemoryFactor returns adaptation factor based on memory usage
func (abm *AdaptiveBufferManager) calculateMemoryFactor(memoryPercent float64) float64 {
if memoryPercent > abm.config.HighMemoryThreshold {
// High memory: decrease buffers to free memory
return -1.0
} else if memoryPercent < abm.config.LowMemoryThreshold {
// Low memory: increase buffers for better performance
return 1.0
}
// Medium memory: linear interpolation
midpoint := (abm.config.HighMemoryThreshold + abm.config.LowMemoryThreshold) / 2
return (midpoint - memoryPercent) / (midpoint - abm.config.LowMemoryThreshold)
}
// calculateLatencyFactor returns adaptation factor based on latency
func (abm *AdaptiveBufferManager) calculateLatencyFactor(latency time.Duration) float64 {
if latency > abm.config.MaxLatency {
// High latency: decrease buffers
return -1.0
} else if latency < abm.config.TargetLatency {
// Low latency: can increase buffers
return 1.0
}
// Medium latency: linear interpolation
midLatency := (abm.config.MaxLatency + abm.config.TargetLatency) / 2
return float64(midLatency-latency) / float64(midLatency-abm.config.TargetLatency)
}
// applyAdaptation applies the adaptation factor to current buffer size
func (abm *AdaptiveBufferManager) applyAdaptation(currentSize, factor float64) float64 {
// Calculate target size based on factor
var targetSize float64
if factor > 0 {
// Increase towards max
targetSize = currentSize + factor*(float64(abm.config.MaxBufferSize)-currentSize)
} else {
// Decrease towards min
targetSize = currentSize + factor*(currentSize-float64(abm.config.MinBufferSize))
}
// Apply smoothing
newSize := currentSize + abm.config.SmoothingFactor*(targetSize-currentSize)
// Clamp to valid range
return math.Max(float64(abm.config.MinBufferSize),
math.Min(float64(abm.config.MaxBufferSize), newSize))
}
// GetStats returns current adaptation statistics
func (abm *AdaptiveBufferManager) GetStats() map[string]interface{} {
abm.mutex.RLock()
lastAdaptation := abm.lastAdaptation
abm.mutex.RUnlock()
return map[string]interface{}{
"input_buffer_size": abm.GetInputBufferSize(),
"output_buffer_size": abm.GetOutputBufferSize(),
"average_latency_ms": float64(atomic.LoadInt64(&abm.averageLatency)) / 1e6,
"system_cpu_percent": float64(atomic.LoadInt64(&abm.systemCPUPercent)) / GetConfig().PercentageMultiplier,
"system_memory_percent": float64(atomic.LoadInt64(&abm.systemMemoryPercent)) / GetConfig().PercentageMultiplier,
"adaptation_count": atomic.LoadInt64(&abm.adaptationCount),
"last_adaptation": lastAdaptation,
}
}
// Global adaptive buffer manager instance
var globalAdaptiveBufferManager *AdaptiveBufferManager
var adaptiveBufferOnce sync.Once
// GetAdaptiveBufferManager returns the global adaptive buffer manager instance
func GetAdaptiveBufferManager() *AdaptiveBufferManager {
adaptiveBufferOnce.Do(func() {
globalAdaptiveBufferManager = NewAdaptiveBufferManager(DefaultAdaptiveBufferConfig())
})
return globalAdaptiveBufferManager
}
// StartAdaptiveBuffering starts the global adaptive buffer manager
func StartAdaptiveBuffering() {
GetAdaptiveBufferManager().Start()
}
// StopAdaptiveBuffering stops the global adaptive buffer manager
func StopAdaptiveBuffering() {
if globalAdaptiveBufferManager != nil {
globalAdaptiveBufferManager.Stop()
}
}