kvm/internal/audio/input_ipc.go
Alex P d7b67e5012 feat(audio): implement goroutine pool for task processing
Add goroutine pool implementation to manage reusable workers for audio processing tasks
Add configuration constants for pool sizing and behavior
Modify audio server components to use pool for goroutine management
Add fallback to direct goroutine creation when pools are full
2025-09-03 12:41:27 +00:00

1292 lines
38 KiB
Go

package audio
import (
"encoding/binary"
"fmt"
"io"
"net"
"os"
"path/filepath"
"runtime"
"sync"
"sync/atomic"
"time"
"github.com/jetkvm/kvm/internal/logging"
"github.com/rs/zerolog"
)
var (
inputMagicNumber uint32 = GetConfig().InputMagicNumber // "JKMI" (JetKVM Microphone Input)
inputSocketName = "audio_input.sock"
)
const (
headerSize = 17 // Fixed header size: 4+1+4+8 bytes - matches GetConfig().HeaderSize
)
var (
maxFrameSize = GetConfig().MaxFrameSize // Maximum Opus frame size
messagePoolSize = GetConfig().MessagePoolSize // Pre-allocated message pool size
)
// InputMessageType represents the type of IPC message
type InputMessageType uint8
const (
InputMessageTypeOpusFrame InputMessageType = iota
InputMessageTypeConfig
InputMessageTypeOpusConfig
InputMessageTypeStop
InputMessageTypeHeartbeat
InputMessageTypeAck
)
// InputIPCMessage represents a message sent over IPC
type InputIPCMessage struct {
Magic uint32
Type InputMessageType
Length uint32
Timestamp int64
Data []byte
}
// Implement IPCMessage interface
func (msg *InputIPCMessage) GetMagic() uint32 {
return msg.Magic
}
func (msg *InputIPCMessage) GetType() uint8 {
return uint8(msg.Type)
}
func (msg *InputIPCMessage) GetLength() uint32 {
return msg.Length
}
func (msg *InputIPCMessage) GetTimestamp() int64 {
return msg.Timestamp
}
func (msg *InputIPCMessage) GetData() []byte {
return msg.Data
}
// OptimizedIPCMessage represents an optimized message with pre-allocated buffers
type OptimizedIPCMessage struct {
header [headerSize]byte // Pre-allocated header buffer
data []byte // Reusable data buffer
msg InputIPCMessage // Embedded message
}
// MessagePool manages a pool of reusable messages to reduce allocations
type MessagePool struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
hitCount int64 // Pool hit counter (atomic)
missCount int64 // Pool miss counter (atomic)
// Other fields
pool chan *OptimizedIPCMessage
// Memory optimization fields
preallocated []*OptimizedIPCMessage // Pre-allocated messages for immediate use
preallocSize int // Number of pre-allocated messages
maxPoolSize int // Maximum pool size to prevent memory bloat
mutex sync.RWMutex // Protects preallocated slice
}
// Global message pool instance
var globalMessagePool = &MessagePool{
pool: make(chan *OptimizedIPCMessage, messagePoolSize),
}
var messagePoolInitOnce sync.Once
// initializeMessagePool initializes the global message pool with pre-allocated messages
func initializeMessagePool() {
messagePoolInitOnce.Do(func() {
preallocSize := messagePoolSize / 4 // 25% pre-allocated for immediate use
globalMessagePool.preallocSize = preallocSize
globalMessagePool.maxPoolSize = messagePoolSize * GetConfig().PoolGrowthMultiplier // Allow growth up to 2x
globalMessagePool.preallocated = make([]*OptimizedIPCMessage, 0, preallocSize)
// Pre-allocate messages for immediate use
for i := 0; i < preallocSize; i++ {
msg := &OptimizedIPCMessage{
data: make([]byte, 0, maxFrameSize),
}
globalMessagePool.preallocated = append(globalMessagePool.preallocated, msg)
}
// Fill the channel with remaining messages
for i := preallocSize; i < messagePoolSize; i++ {
globalMessagePool.pool <- &OptimizedIPCMessage{
data: make([]byte, 0, maxFrameSize),
}
}
})
}
// Get retrieves a message from the pool
func (mp *MessagePool) Get() *OptimizedIPCMessage {
initializeMessagePool()
// First try pre-allocated messages for fastest access
mp.mutex.Lock()
if len(mp.preallocated) > 0 {
msg := mp.preallocated[len(mp.preallocated)-1]
mp.preallocated = mp.preallocated[:len(mp.preallocated)-1]
mp.mutex.Unlock()
atomic.AddInt64(&mp.hitCount, 1)
// Reset message for reuse
msg.data = msg.data[:0]
msg.msg = InputIPCMessage{}
return msg
}
mp.mutex.Unlock()
// Try channel pool next
select {
case msg := <-mp.pool:
atomic.AddInt64(&mp.hitCount, 1)
// Reset message for reuse and ensure proper capacity
msg.data = msg.data[:0]
msg.msg = InputIPCMessage{}
// Ensure data buffer has sufficient capacity
if cap(msg.data) < maxFrameSize {
msg.data = make([]byte, 0, maxFrameSize)
}
return msg
default:
// Pool exhausted, create new message with exact capacity
atomic.AddInt64(&mp.missCount, 1)
return &OptimizedIPCMessage{
data: make([]byte, 0, maxFrameSize),
}
}
}
// Put returns a message to the pool
func (mp *MessagePool) Put(msg *OptimizedIPCMessage) {
if msg == nil {
return
}
// Validate buffer capacity - reject if too small or too large
if cap(msg.data) < maxFrameSize/2 || cap(msg.data) > maxFrameSize*2 {
return // Let GC handle oversized or undersized buffers
}
// Reset the message for reuse
msg.data = msg.data[:0]
msg.msg = InputIPCMessage{}
// First try to return to pre-allocated pool for fastest reuse
mp.mutex.Lock()
if len(mp.preallocated) < mp.preallocSize {
mp.preallocated = append(mp.preallocated, msg)
mp.mutex.Unlock()
return
}
mp.mutex.Unlock()
// Try channel pool next
select {
case mp.pool <- msg:
// Successfully returned to pool
default:
// Pool full, let GC handle it
}
}
// InputIPCConfig represents configuration for audio input
type InputIPCConfig struct {
SampleRate int
Channels int
FrameSize int
}
// InputIPCOpusConfig contains complete Opus encoder configuration
type InputIPCOpusConfig struct {
SampleRate int
Channels int
FrameSize int
Bitrate int
Complexity int
VBR int
SignalType int
Bandwidth int
DTX int
}
// AudioInputServer handles IPC communication for audio input processing
type AudioInputServer struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
bufferSize int64 // Current buffer size (atomic)
processingTime int64 // Average processing time in nanoseconds (atomic)
droppedFrames int64 // Dropped frames counter (atomic)
totalFrames int64 // Total frames counter (atomic)
listener net.Listener
conn net.Conn
mtx sync.Mutex
running bool
// Triple-goroutine architecture
messageChan chan *InputIPCMessage // Buffered channel for incoming messages
processChan chan *InputIPCMessage // Buffered channel for processing queue
stopChan chan struct{} // Stop signal for all goroutines
wg sync.WaitGroup // Wait group for goroutine coordination
// Socket buffer configuration
socketBufferConfig SocketBufferConfig
}
// NewAudioInputServer creates a new audio input server
func NewAudioInputServer() (*AudioInputServer, error) {
socketPath := getInputSocketPath()
// Remove existing socket if any
os.Remove(socketPath)
listener, err := net.Listen("unix", socketPath)
if err != nil {
return nil, fmt.Errorf("failed to create unix socket: %w", err)
}
// Get initial buffer size from adaptive buffer manager
adaptiveManager := GetAdaptiveBufferManager()
initialBufferSize := int64(adaptiveManager.GetInputBufferSize())
// Initialize socket buffer configuration
socketBufferConfig := DefaultSocketBufferConfig()
return &AudioInputServer{
listener: listener,
messageChan: make(chan *InputIPCMessage, initialBufferSize),
processChan: make(chan *InputIPCMessage, initialBufferSize),
stopChan: make(chan struct{}),
bufferSize: initialBufferSize,
socketBufferConfig: socketBufferConfig,
}, nil
}
// Start starts the audio input server
func (ais *AudioInputServer) Start() error {
ais.mtx.Lock()
defer ais.mtx.Unlock()
if ais.running {
return fmt.Errorf("server already running")
}
ais.running = true
// Reset counters on start
atomic.StoreInt64(&ais.totalFrames, 0)
atomic.StoreInt64(&ais.droppedFrames, 0)
atomic.StoreInt64(&ais.processingTime, 0)
// Start triple-goroutine architecture
ais.startReaderGoroutine()
ais.startProcessorGoroutine()
ais.startMonitorGoroutine()
// Submit the connection acceptor to the audio reader pool
if !SubmitAudioReaderTask(ais.acceptConnections) {
// If the pool is full or shutting down, fall back to direct goroutine creation
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
logger.Warn().Msg("Audio reader pool full or shutting down, falling back to direct goroutine creation")
go ais.acceptConnections()
}
return nil
}
// Stop stops the audio input server
func (ais *AudioInputServer) Stop() {
ais.mtx.Lock()
defer ais.mtx.Unlock()
if !ais.running {
return
}
ais.running = false
// Signal all goroutines to stop
close(ais.stopChan)
ais.wg.Wait()
if ais.conn != nil {
ais.conn.Close()
ais.conn = nil
}
if ais.listener != nil {
ais.listener.Close()
}
}
// Close closes the server and cleans up resources
func (ais *AudioInputServer) Close() {
ais.Stop()
// Remove socket file
os.Remove(getInputSocketPath())
}
// acceptConnections accepts incoming connections
func (ais *AudioInputServer) acceptConnections() {
for ais.running {
conn, err := ais.listener.Accept()
if err != nil {
if ais.running {
// Log error and continue accepting
logger := logging.GetDefaultLogger().With().Str("component", "audio-input").Logger()
logger.Warn().Err(err).Msg("failed to accept connection, retrying")
continue
}
return
}
// Configure socket buffers for optimal performance
if err := ConfigureSocketBuffers(conn, ais.socketBufferConfig); err != nil {
// Log warning but don't fail - socket buffer optimization is not critical
logger := logging.GetDefaultLogger().With().Str("component", "audio-input").Logger()
logger.Warn().Err(err).Msg("failed to configure socket buffers, using defaults")
} else {
// Record socket buffer metrics for monitoring
RecordSocketBufferMetrics(conn, "audio-input")
}
ais.mtx.Lock()
// Close existing connection if any to prevent resource leaks
if ais.conn != nil {
ais.conn.Close()
ais.conn = nil
}
ais.conn = conn
ais.mtx.Unlock()
// Handle this connection using the goroutine pool
if !SubmitAudioReaderTask(func() { ais.handleConnection(conn) }) {
// If the pool is full or shutting down, fall back to direct goroutine creation
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
logger.Warn().Msg("Audio reader pool full or shutting down, falling back to direct goroutine creation")
go ais.handleConnection(conn)
}
}
}
// handleConnection handles a single client connection
func (ais *AudioInputServer) handleConnection(conn net.Conn) {
defer conn.Close()
// Connection is now handled by the reader goroutine
// Just wait for connection to close or stop signal
for {
select {
case <-ais.stopChan:
return
default:
// Check if connection is still alive
if ais.conn == nil {
return
}
time.Sleep(GetConfig().DefaultSleepDuration)
}
}
}
// readMessage reads a message from the connection using optimized pooled buffers with validation.
//
// Validation Rules:
// - Magic number must match InputMagicNumber ("JKMI" - JetKVM Microphone Input)
// - Message length must not exceed MaxFrameSize (default: 4096 bytes)
// - Header size is fixed at 17 bytes (4+1+4+8: Magic+Type+Length+Timestamp)
// - Data length validation prevents buffer overflow attacks
//
// Message Format:
// - Magic (4 bytes): Identifies valid JetKVM audio messages
// - Type (1 byte): InputMessageType (OpusFrame, Config, Stop, Heartbeat, Ack)
// - Length (4 bytes): Data payload size in bytes
// - Timestamp (8 bytes): Message timestamp for latency tracking
// - Data (variable): Message payload up to MaxFrameSize
//
// Error Conditions:
// - Invalid magic number: Rejects non-JetKVM messages
// - Message too large: Prevents memory exhaustion
// - Connection errors: Network/socket failures
// - Incomplete reads: Partial message reception
//
// The function uses pooled buffers for efficient memory management and
// ensures all messages conform to the JetKVM audio protocol specification.
func (ais *AudioInputServer) readMessage(conn net.Conn) (*InputIPCMessage, error) {
// Get optimized message from pool
optMsg := globalMessagePool.Get()
defer globalMessagePool.Put(optMsg)
// Read header directly into pre-allocated buffer
_, err := io.ReadFull(conn, optMsg.header[:])
if err != nil {
return nil, err
}
// Parse header using optimized access
msg := &optMsg.msg
msg.Magic = binary.LittleEndian.Uint32(optMsg.header[0:4])
msg.Type = InputMessageType(optMsg.header[4])
msg.Length = binary.LittleEndian.Uint32(optMsg.header[5:9])
msg.Timestamp = int64(binary.LittleEndian.Uint64(optMsg.header[9:17]))
// Validate magic number
if msg.Magic != inputMagicNumber {
return nil, fmt.Errorf("invalid magic number: got 0x%x, expected 0x%x", msg.Magic, inputMagicNumber)
}
// Validate message length
if msg.Length > uint32(maxFrameSize) {
return nil, fmt.Errorf("message too large: got %d bytes, maximum allowed %d bytes", msg.Length, maxFrameSize)
}
// Read data if present using pooled buffer
if msg.Length > 0 {
// Ensure buffer capacity
if cap(optMsg.data) < int(msg.Length) {
optMsg.data = make([]byte, msg.Length)
} else {
optMsg.data = optMsg.data[:msg.Length]
}
_, err = io.ReadFull(conn, optMsg.data)
if err != nil {
return nil, err
}
msg.Data = optMsg.data
}
// Return a copy of the message (data will be copied by caller if needed)
result := &InputIPCMessage{
Magic: msg.Magic,
Type: msg.Type,
Length: msg.Length,
Timestamp: msg.Timestamp,
}
if msg.Length > 0 {
// Copy data to ensure it's not affected by buffer reuse
result.Data = make([]byte, msg.Length)
copy(result.Data, msg.Data)
}
return result, nil
}
// processMessage processes a received message
func (ais *AudioInputServer) processMessage(msg *InputIPCMessage) error {
switch msg.Type {
case InputMessageTypeOpusFrame:
return ais.processOpusFrame(msg.Data)
case InputMessageTypeConfig:
return ais.processConfig(msg.Data)
case InputMessageTypeOpusConfig:
return ais.processOpusConfig(msg.Data)
case InputMessageTypeStop:
return fmt.Errorf("stop message received")
case InputMessageTypeHeartbeat:
return ais.sendAck()
default:
return fmt.Errorf("unknown message type: %d", msg.Type)
}
}
// processOpusFrame processes an Opus audio frame
func (ais *AudioInputServer) processOpusFrame(data []byte) error {
if len(data) == 0 {
return nil // Empty frame, ignore
}
// Use ultra-fast validation for critical audio path
if err := ValidateAudioFrame(data); err != nil {
logger := logging.GetDefaultLogger().With().Str("component", AudioInputServerComponent).Logger()
logger.Error().Err(err).Msg("Frame validation failed")
return fmt.Errorf("input frame validation failed: %w", err)
}
// Process the Opus frame using CGO
_, err := CGOAudioDecodeWrite(data)
return err
}
// processConfig processes a configuration update
func (ais *AudioInputServer) processConfig(data []byte) error {
// Validate configuration data
if len(data) == 0 {
return fmt.Errorf("empty configuration data")
}
// Basic validation for configuration size
if err := ValidateBufferSize(len(data)); err != nil {
logger := logging.GetDefaultLogger().With().Str("component", AudioInputServerComponent).Logger()
logger.Error().Err(err).Msg("Configuration buffer validation failed")
return fmt.Errorf("configuration validation failed: %w", err)
}
// Acknowledge configuration receipt
return ais.sendAck()
}
// processOpusConfig processes a complete Opus encoder configuration update
func (ais *AudioInputServer) processOpusConfig(data []byte) error {
logger := logging.GetDefaultLogger().With().Str("component", AudioInputServerComponent).Logger()
// Validate configuration data size (9 * int32 = 36 bytes)
if len(data) != 36 {
return fmt.Errorf("invalid Opus configuration data size: expected 36 bytes, got %d", len(data))
}
// Deserialize Opus configuration
config := InputIPCOpusConfig{
SampleRate: int(binary.LittleEndian.Uint32(data[0:4])),
Channels: int(binary.LittleEndian.Uint32(data[4:8])),
FrameSize: int(binary.LittleEndian.Uint32(data[8:12])),
Bitrate: int(binary.LittleEndian.Uint32(data[12:16])),
Complexity: int(binary.LittleEndian.Uint32(data[16:20])),
VBR: int(binary.LittleEndian.Uint32(data[20:24])),
SignalType: int(binary.LittleEndian.Uint32(data[24:28])),
Bandwidth: int(binary.LittleEndian.Uint32(data[28:32])),
DTX: int(binary.LittleEndian.Uint32(data[32:36])),
}
logger.Info().Interface("config", config).Msg("applying dynamic Opus encoder configuration")
// Apply the Opus encoder configuration dynamically
err := CGOUpdateOpusEncoderParams(
config.Bitrate,
config.Complexity,
config.VBR,
0, // VBR constraint - using default
config.SignalType,
config.Bandwidth,
config.DTX,
)
if err != nil {
logger.Error().Err(err).Msg("failed to apply Opus encoder configuration")
return fmt.Errorf("failed to apply Opus configuration: %w", err)
}
logger.Info().Msg("Opus encoder configuration applied successfully")
return ais.sendAck()
}
// sendAck sends an acknowledgment message
func (ais *AudioInputServer) sendAck() error {
ais.mtx.Lock()
defer ais.mtx.Unlock()
if ais.conn == nil {
return fmt.Errorf("no connection")
}
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeAck,
Length: 0,
Timestamp: time.Now().UnixNano(),
}
return ais.writeMessage(ais.conn, msg)
}
// Global shared message pool for input IPC server
var globalInputServerMessagePool = NewGenericMessagePool(messagePoolSize)
// writeMessage writes a message to the connection using shared common utilities
func (ais *AudioInputServer) writeMessage(conn net.Conn, msg *InputIPCMessage) error {
// Use shared WriteIPCMessage function with global message pool
return WriteIPCMessage(conn, msg, globalInputServerMessagePool, &ais.droppedFrames)
}
// AudioInputClient handles IPC communication from the main process
type AudioInputClient struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
droppedFrames int64 // Atomic counter for dropped frames
totalFrames int64 // Atomic counter for total frames
conn net.Conn
mtx sync.Mutex
running bool
}
// NewAudioInputClient creates a new audio input client
func NewAudioInputClient() *AudioInputClient {
return &AudioInputClient{}
}
// Connect connects to the audio input server
func (aic *AudioInputClient) Connect() error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if aic.running {
return nil // Already connected
}
// Ensure clean state before connecting
if aic.conn != nil {
aic.conn.Close()
aic.conn = nil
}
socketPath := getInputSocketPath()
// Try connecting multiple times as the server might not be ready
// Reduced retry count and delay for faster startup
for i := 0; i < 10; i++ {
conn, err := net.Dial("unix", socketPath)
if err == nil {
aic.conn = conn
aic.running = true
// Reset frame counters on successful connection
atomic.StoreInt64(&aic.totalFrames, 0)
atomic.StoreInt64(&aic.droppedFrames, 0)
return nil
}
// Exponential backoff starting from config
backoffStart := GetConfig().BackoffStart
delay := time.Duration(backoffStart.Nanoseconds()*(1<<uint(i/3))) * time.Nanosecond
maxDelay := GetConfig().MaxRetryDelay
if delay > maxDelay {
delay = maxDelay
}
time.Sleep(delay)
}
// Ensure clean state on connection failure
aic.conn = nil
aic.running = false
return fmt.Errorf("failed to connect to audio input server after 10 attempts")
}
// Disconnect disconnects from the audio input server
func (aic *AudioInputClient) Disconnect() {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running {
return
}
aic.running = false
if aic.conn != nil {
// Send stop message
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeStop,
Length: 0,
Timestamp: time.Now().UnixNano(),
}
_ = aic.writeMessage(msg) // Ignore errors during shutdown
aic.conn.Close()
aic.conn = nil
}
}
// SendFrame sends an Opus frame to the audio input server
func (aic *AudioInputClient) SendFrame(frame []byte) error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected to audio input server")
}
if len(frame) == 0 {
return nil // Empty frame, ignore
}
// Validate frame data before sending
if err := ValidateAudioFrame(frame); err != nil {
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
logger.Error().Err(err).Msg("Frame validation failed")
return fmt.Errorf("input frame validation failed: %w", err)
}
if len(frame) > maxFrameSize {
return fmt.Errorf("frame too large: got %d bytes, maximum allowed %d bytes", len(frame), maxFrameSize)
}
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeOpusFrame,
Length: uint32(len(frame)),
Timestamp: time.Now().UnixNano(),
Data: frame,
}
return aic.writeMessage(msg)
}
// SendFrameZeroCopy sends a zero-copy Opus frame to the audio input server
func (aic *AudioInputClient) SendFrameZeroCopy(frame *ZeroCopyAudioFrame) error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected to audio input server")
}
if frame == nil || frame.Length() == 0 {
return nil // Empty frame, ignore
}
// Validate zero-copy frame before sending
if err := ValidateZeroCopyFrame(frame); err != nil {
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
logger.Error().Err(err).Msg("Zero-copy frame validation failed")
return fmt.Errorf("input frame validation failed: %w", err)
}
if frame.Length() > maxFrameSize {
return fmt.Errorf("frame too large: got %d bytes, maximum allowed %d bytes", frame.Length(), maxFrameSize)
}
// Use zero-copy data directly
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeOpusFrame,
Length: uint32(frame.Length()),
Timestamp: time.Now().UnixNano(),
Data: frame.Data(), // Zero-copy data access
}
return aic.writeMessage(msg)
}
// SendConfig sends a configuration update to the audio input server
func (aic *AudioInputClient) SendConfig(config InputIPCConfig) error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected to audio input server")
}
// Validate configuration parameters
if err := ValidateInputIPCConfig(config.SampleRate, config.Channels, config.FrameSize); err != nil {
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
logger.Error().Err(err).Msg("Configuration validation failed")
return fmt.Errorf("input configuration validation failed: %w", err)
}
// Serialize config (simple binary format)
data := make([]byte, 12) // 3 * int32
binary.LittleEndian.PutUint32(data[0:4], uint32(config.SampleRate))
binary.LittleEndian.PutUint32(data[4:8], uint32(config.Channels))
binary.LittleEndian.PutUint32(data[8:12], uint32(config.FrameSize))
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeConfig,
Length: uint32(len(data)),
Timestamp: time.Now().UnixNano(),
Data: data,
}
return aic.writeMessage(msg)
}
// SendOpusConfig sends a complete Opus encoder configuration update to the audio input server
func (aic *AudioInputClient) SendOpusConfig(config InputIPCOpusConfig) error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected to audio input server")
}
// Validate configuration parameters
if config.SampleRate <= 0 || config.Channels <= 0 || config.FrameSize <= 0 || config.Bitrate <= 0 {
return fmt.Errorf("invalid Opus configuration: SampleRate=%d, Channels=%d, FrameSize=%d, Bitrate=%d",
config.SampleRate, config.Channels, config.FrameSize, config.Bitrate)
}
// Serialize Opus configuration (9 * int32 = 36 bytes)
data := make([]byte, 36)
binary.LittleEndian.PutUint32(data[0:4], uint32(config.SampleRate))
binary.LittleEndian.PutUint32(data[4:8], uint32(config.Channels))
binary.LittleEndian.PutUint32(data[8:12], uint32(config.FrameSize))
binary.LittleEndian.PutUint32(data[12:16], uint32(config.Bitrate))
binary.LittleEndian.PutUint32(data[16:20], uint32(config.Complexity))
binary.LittleEndian.PutUint32(data[20:24], uint32(config.VBR))
binary.LittleEndian.PutUint32(data[24:28], uint32(config.SignalType))
binary.LittleEndian.PutUint32(data[28:32], uint32(config.Bandwidth))
binary.LittleEndian.PutUint32(data[32:36], uint32(config.DTX))
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeOpusConfig,
Length: uint32(len(data)),
Timestamp: time.Now().UnixNano(),
Data: data,
}
return aic.writeMessage(msg)
}
// SendHeartbeat sends a heartbeat message
func (aic *AudioInputClient) SendHeartbeat() error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected to audio input server")
}
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeHeartbeat,
Length: 0,
Timestamp: time.Now().UnixNano(),
}
return aic.writeMessage(msg)
}
// writeMessage writes a message to the server
// Global shared message pool for input IPC clients
var globalInputMessagePool = NewGenericMessagePool(messagePoolSize)
func (aic *AudioInputClient) writeMessage(msg *InputIPCMessage) error {
// Increment total frames counter
atomic.AddInt64(&aic.totalFrames, 1)
// Use shared WriteIPCMessage function with global message pool
return WriteIPCMessage(aic.conn, msg, globalInputMessagePool, &aic.droppedFrames)
}
// IsConnected returns whether the client is connected
func (aic *AudioInputClient) IsConnected() bool {
aic.mtx.Lock()
defer aic.mtx.Unlock()
return aic.running && aic.conn != nil
}
// GetFrameStats returns frame statistics
func (aic *AudioInputClient) GetFrameStats() (total, dropped int64) {
stats := GetFrameStats(&aic.totalFrames, &aic.droppedFrames)
return stats.Total, stats.Dropped
}
// GetDropRate returns the current frame drop rate as a percentage
func (aic *AudioInputClient) GetDropRate() float64 {
stats := GetFrameStats(&aic.totalFrames, &aic.droppedFrames)
return CalculateDropRate(stats)
}
// ResetStats resets frame statistics
func (aic *AudioInputClient) ResetStats() {
ResetFrameStats(&aic.totalFrames, &aic.droppedFrames)
}
// startReaderGoroutine starts the message reader using the goroutine pool
func (ais *AudioInputServer) startReaderGoroutine() {
ais.wg.Add(1)
// Create a reader task that will run in the goroutine pool
readerTask := func() {
defer ais.wg.Done()
// Enhanced error tracking and recovery
var consecutiveErrors int
var lastErrorTime time.Time
maxConsecutiveErrors := GetConfig().MaxConsecutiveErrors
errorResetWindow := GetConfig().RestartWindow // Use existing restart window
baseBackoffDelay := GetConfig().RetryDelay
maxBackoffDelay := GetConfig().MaxRetryDelay
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
for {
select {
case <-ais.stopChan:
return
default:
if ais.conn != nil {
msg, err := ais.readMessage(ais.conn)
if err != nil {
// Enhanced error handling with progressive backoff
now := time.Now()
// Reset error counter if enough time has passed
if now.Sub(lastErrorTime) > errorResetWindow {
consecutiveErrors = 0
}
consecutiveErrors++
lastErrorTime = now
// Log error with context
logger.Warn().Err(err).
Int("consecutive_errors", consecutiveErrors).
Msg("Failed to read message from input connection")
// Progressive backoff based on error count
if consecutiveErrors > 1 {
backoffDelay := time.Duration(consecutiveErrors-1) * baseBackoffDelay
if backoffDelay > maxBackoffDelay {
backoffDelay = maxBackoffDelay
}
time.Sleep(backoffDelay)
}
// If too many consecutive errors, close connection to force reconnect
if consecutiveErrors >= maxConsecutiveErrors {
logger.Error().
Int("consecutive_errors", consecutiveErrors).
Msg("Too many consecutive read errors, closing connection")
ais.mtx.Lock()
if ais.conn != nil {
ais.conn.Close()
ais.conn = nil
}
ais.mtx.Unlock()
consecutiveErrors = 0 // Reset for next connection
}
continue
}
// Reset error counter on successful read
if consecutiveErrors > 0 {
consecutiveErrors = 0
logger.Info().Msg("Input connection recovered")
}
// Send to message channel with non-blocking write
select {
case ais.messageChan <- msg:
atomic.AddInt64(&ais.totalFrames, 1)
default:
// Channel full, drop message
atomic.AddInt64(&ais.droppedFrames, 1)
logger.Warn().Msg("Message channel full, dropping frame")
}
} else {
// No connection, wait briefly before checking again
time.Sleep(GetConfig().DefaultSleepDuration)
}
}
}
}
// Submit the reader task to the audio reader pool
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
if !SubmitAudioReaderTask(readerTask) {
// If the pool is full or shutting down, fall back to direct goroutine creation
logger.Warn().Msg("Audio reader pool full or shutting down, falling back to direct goroutine creation")
go readerTask()
}
}
// startProcessorGoroutine starts the message processor using the goroutine pool
func (ais *AudioInputServer) startProcessorGoroutine() {
ais.wg.Add(1)
// Create a processor task that will run in the goroutine pool
processorTask := func() {
runtime.LockOSThread()
defer runtime.UnlockOSThread()
// Set high priority for audio processing
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
if err := SetAudioThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to set audio processing priority")
}
defer func() {
if err := ResetThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to reset thread priority")
}
}()
// Enhanced error tracking for processing
var processingErrors int
var lastProcessingError time.Time
maxProcessingErrors := GetConfig().MaxConsecutiveErrors
errorResetWindow := GetConfig().RestartWindow
defer ais.wg.Done()
for {
select {
case <-ais.stopChan:
return
case msg := <-ais.messageChan:
// Process message with error handling
start := time.Now()
err := ais.processMessageWithRecovery(msg, logger)
processingTime := time.Since(start)
if err != nil {
// Track processing errors
now := time.Now()
if now.Sub(lastProcessingError) > errorResetWindow {
processingErrors = 0
}
processingErrors++
lastProcessingError = now
logger.Warn().Err(err).
Int("processing_errors", processingErrors).
Dur("processing_time", processingTime).
Msg("Failed to process input message")
// If too many processing errors, drop frames more aggressively
if processingErrors >= maxProcessingErrors {
logger.Error().
Int("processing_errors", processingErrors).
Msg("Too many processing errors, entering aggressive drop mode")
// Clear processing queue to recover
for len(ais.processChan) > 0 {
select {
case <-ais.processChan:
atomic.AddInt64(&ais.droppedFrames, 1)
default:
break
}
}
processingErrors = 0 // Reset after clearing queue
}
continue
}
// Reset error counter on successful processing
if processingErrors > 0 {
processingErrors = 0
logger.Info().Msg("Input processing recovered")
}
// Update processing time metrics
atomic.StoreInt64(&ais.processingTime, processingTime.Nanoseconds())
}
}
}
// Submit the processor task to the audio processor pool
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
if !SubmitAudioProcessorTask(processorTask) {
// If the pool is full or shutting down, fall back to direct goroutine creation
logger.Warn().Msg("Audio processor pool full or shutting down, falling back to direct goroutine creation")
go processorTask()
}
}
// processMessageWithRecovery processes a message with enhanced error recovery
func (ais *AudioInputServer) processMessageWithRecovery(msg *InputIPCMessage, logger zerolog.Logger) error {
// Intelligent frame dropping: prioritize recent frames
if msg.Type == InputMessageTypeOpusFrame {
// Check if processing queue is getting full
queueLen := len(ais.processChan)
bufferSize := int(atomic.LoadInt64(&ais.bufferSize))
if queueLen > bufferSize*3/4 {
// Drop oldest frames, keep newest
select {
case <-ais.processChan: // Remove oldest
atomic.AddInt64(&ais.droppedFrames, 1)
logger.Debug().Msg("Dropped oldest frame to make room")
default:
}
}
}
// Send to processing queue with timeout
select {
case ais.processChan <- msg:
return nil
case <-time.After(GetConfig().WriteTimeout):
// Processing queue full and timeout reached, drop frame
atomic.AddInt64(&ais.droppedFrames, 1)
return fmt.Errorf("processing queue timeout")
default:
// Processing queue full, drop frame immediately
atomic.AddInt64(&ais.droppedFrames, 1)
return fmt.Errorf("processing queue full")
}
}
// startMonitorGoroutine starts the performance monitoring using the goroutine pool
func (ais *AudioInputServer) startMonitorGoroutine() {
ais.wg.Add(1)
// Create a monitor task that will run in the goroutine pool
monitorTask := func() {
runtime.LockOSThread()
defer runtime.UnlockOSThread()
// Set I/O priority for monitoring
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
if err := SetAudioIOThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to set audio I/O priority")
}
defer func() {
if err := ResetThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to reset thread priority")
}
}()
defer ais.wg.Done()
ticker := time.NewTicker(GetConfig().DefaultTickerInterval)
defer ticker.Stop()
// Buffer size update ticker (less frequent)
bufferUpdateTicker := time.NewTicker(GetConfig().BufferUpdateInterval)
defer bufferUpdateTicker.Stop()
for {
select {
case <-ais.stopChan:
return
case <-ticker.C:
// Process frames from processing queue
for {
select {
case msg := <-ais.processChan:
start := time.Now()
err := ais.processMessage(msg)
processingTime := time.Since(start)
// Calculate end-to-end latency using message timestamp
var latency time.Duration
if msg.Type == InputMessageTypeOpusFrame && msg.Timestamp > 0 {
msgTime := time.Unix(0, msg.Timestamp)
latency = time.Since(msgTime)
// Use exponential moving average for end-to-end latency tracking
currentAvg := atomic.LoadInt64(&ais.processingTime)
// Weight: 90% historical, 10% current (for smoother averaging)
newAvg := (currentAvg*9 + latency.Nanoseconds()) / 10
atomic.StoreInt64(&ais.processingTime, newAvg)
} else {
// Fallback to processing time only
latency = processingTime
currentAvg := atomic.LoadInt64(&ais.processingTime)
newAvg := (currentAvg + processingTime.Nanoseconds()) / 2
atomic.StoreInt64(&ais.processingTime, newAvg)
}
// Report latency to adaptive buffer manager
ais.ReportLatency(latency)
if err != nil {
atomic.AddInt64(&ais.droppedFrames, 1)
}
default:
// No more messages to process
goto checkBufferUpdate
}
}
checkBufferUpdate:
// Check if we need to update buffer size
select {
case <-bufferUpdateTicker.C:
// Update buffer size from adaptive buffer manager
ais.UpdateBufferSize()
default:
// No buffer update needed
}
}
}
}
// Submit the monitor task to the audio processor pool
logger := logging.GetDefaultLogger().With().Str("component", AudioInputClientComponent).Logger()
if !SubmitAudioProcessorTask(monitorTask) {
// If the pool is full or shutting down, fall back to direct goroutine creation
logger.Warn().Msg("Audio processor pool full or shutting down, falling back to direct goroutine creation")
go monitorTask()
}
}
// GetServerStats returns server performance statistics
func (ais *AudioInputServer) GetServerStats() (total, dropped int64, avgProcessingTime time.Duration, bufferSize int64) {
return atomic.LoadInt64(&ais.totalFrames),
atomic.LoadInt64(&ais.droppedFrames),
time.Duration(atomic.LoadInt64(&ais.processingTime)),
atomic.LoadInt64(&ais.bufferSize)
}
// UpdateBufferSize updates the buffer size from adaptive buffer manager
func (ais *AudioInputServer) UpdateBufferSize() {
adaptiveManager := GetAdaptiveBufferManager()
newSize := int64(adaptiveManager.GetInputBufferSize())
atomic.StoreInt64(&ais.bufferSize, newSize)
}
// ReportLatency reports processing latency to adaptive buffer manager
func (ais *AudioInputServer) ReportLatency(latency time.Duration) {
adaptiveManager := GetAdaptiveBufferManager()
adaptiveManager.UpdateLatency(latency)
}
// GetMessagePoolStats returns detailed statistics about the message pool
func (mp *MessagePool) GetMessagePoolStats() MessagePoolStats {
mp.mutex.RLock()
preallocatedCount := len(mp.preallocated)
mp.mutex.RUnlock()
hitCount := atomic.LoadInt64(&mp.hitCount)
missCount := atomic.LoadInt64(&mp.missCount)
totalRequests := hitCount + missCount
var hitRate float64
if totalRequests > 0 {
hitRate = float64(hitCount) / float64(totalRequests) * GetConfig().PercentageMultiplier
}
// Calculate channel pool size
channelPoolSize := len(mp.pool)
return MessagePoolStats{
MaxPoolSize: mp.maxPoolSize,
ChannelPoolSize: channelPoolSize,
PreallocatedCount: int64(preallocatedCount),
PreallocatedMax: int64(mp.preallocSize),
HitCount: hitCount,
MissCount: missCount,
HitRate: hitRate,
}
}
// MessagePoolStats provides detailed message pool statistics
type MessagePoolStats struct {
MaxPoolSize int
ChannelPoolSize int
PreallocatedCount int64
PreallocatedMax int64
HitCount int64
MissCount int64
HitRate float64 // Percentage
}
// GetGlobalMessagePoolStats returns statistics for the global message pool
func GetGlobalMessagePoolStats() MessagePoolStats {
return globalMessagePool.GetMessagePoolStats()
}
// Helper functions
// getInputSocketPath returns the path to the input socket
func getInputSocketPath() string {
if path := os.Getenv("JETKVM_AUDIO_INPUT_SOCKET"); path != "" {
return path
}
return filepath.Join("/var/run", inputSocketName)
}